

IPv6 Protocol Does it solve all the security problems of IPv4?

Franjo Majstor

EMEA Consulting Engineer

fmajstor@cisco.com

Cisco Systems, Inc.

Agenda

- IPv6 Primer
- IPv6 Protocol Security
- Dual stack approach
- Q&A

IPv4 & IPv6 Header Comparison IPv4 Header IPv6 Header

Version	IHL	Type of Service	Total Length		Version	Traffic Class	Flow L	.abel
Identification		Flags Fragment Offset Header Checksum		Pay	load Length	Next Header	Hop Limit	
Source Address Destination Address Options Padding					Source	Addres	S	
 field's name kept from IPv4 to IPv6 fields not kept in IPv6 Name & position changed in IPv6 New field in IPv6 						Destinati	on Addro	ess

IPv6 Header Options (RFC 2460)

 Processed only by node identified in IPv6 Destination Address field => much lower overhead than IPv4 options exception: Hop-by-Hop Options header

 Eliminated IPv4's 40-octet limit on options in IPv6, limit is total packet size, or Path MTU in some cases

IPv6 Security Options

- All implementations required to support authentication and encryption headers (AH and ESP of IPsec)
- Authentication separate from encryption for use in situations where encryption is prohibited or prohibitively expensive
- Key distribution protocols are under development (independent of IP v4/v6)
- Support for manual key configuration required

Authentication Header (AH)

Next Header	Hdr Ext Len	Reserved			
Security Parameters Index (SPI)					
Sequence Number					
- Authentication Data -					

- Destination Address + SPI identifies security association state (key, lifetime, algorithm, etc.)
- Provides <u>origin authentication</u>, <u>data integrity</u> and <u>anti-</u> <u>replay protection</u> for all fields of IPv6 packet that do not change en-route
- Default algorithms are MD5/SHA-1

Encapsulating Security Payload (ESP)

Security Parameters Index (SPI)					
Sequence Number					
Payload					
Padding	Padding Length Next Header				
- Authentication Data -					

- Provides <u>origin authentication</u>, <u>data integrity</u>, <u>anti-</u> <u>replay protection</u> and <u>confidentiality</u> of the IPv6 packet payload
- Default algorithms are DES/3DES, MD-5, SHA-1

What else does IPv6 for Security?

- Security
 - Nothing IP4 doesn't do IPsec runs on both
 - and IPv6 mandates IPsec implementation.
 - Does a lot dynamically on L3 (via ICMP), hence remove part of L2 problems, right?
 - Supports "privacy" addressing scheme
 - Migration via dual stacks!

IPv6 Security Exposures...

Autoconfiguration

stateless configuration and discovery, contradicting requirements with security

ICMPv6 protected by IPsec

security bootstrap problem

• DAD

- duplicate address detection mechanism

Stateless autoconfiguration

Router solicitation are sent by booting nodes to request RAs for configuring the interfaces.

Neighbor Discovery - Neighbor Solicitation

DAD (Duplicate Address Detection)

From RFC 2462:

« If a duplicate @ is discovered ... the address *cannot* be assigned to the interface...»

⇔ What if: Use MAC@ of the node you want to DoS and fabricate its IPv6 @

 Duplicate Address Detection (DAD) uses neighbor solicitation to verify the existence of an address to be configured.

Neighbor Discovery - Redirect

 Redirect is used by a router to signal the reroute of a packet to a better router.

IPv4 Spoofing using Source Routing

Back traffic uses the same source route

Mobile IP - security still work in progress

• Mobility means:

Mobile devices are fully supported whit

- **Built-in on IPv6**
 - Any node can use it

Efficient routing means performance for end-users

IPv6/IPv4 Dual Stack Approach

• Dual stack node means:

Both IPv4 and IPv6 stacks enabled

Applications can talk to both

Choice of the IPv4 or IPv6 is based on name lookup and app. preference

Dual Stack Approach & VPN

- In a dual stack case & VPN tunnel with non-split tunneling policy:
 - All IPv4 traffic is non-split tunneled through VPN tunnel
 - All IPv6 traffic is going out (and in) in the clear as a policy violation(?)

IPv6 vs. IPv4 Security Summary

Service	IPv4 Solution	IPv6 Solution	
Fragmentation	Router or end node can fragment	Only end nodes can fragment	
Source routing	Could be disabled	Routing Hdr required for Mobile IPv6	
ICMP Redirection	no ip icmp redirect	no ipv6 redirect	
Duplicate addressing	No protection	No protection	
Privacy	Layer 3	Layer 2-3	
Integ/Auth/Confid.	IPSec	IPSec Mandated	

Questions?

References

Forums and test beds: www.6net.org www.6bone.net www.ipv6forum.com Vendor links: www.cisco.com/ipv6 www.microsoft.com/ipv6 Other useful links: www.kame.net Pv6 ready www.bieringer.de/linux/IPv6 www.hs247.com www.ietf.org/internet-drafts/draft-ietf-send-psreq-03.txt www.ietf.org/internet-drafts/draft-ietf-send-cga-01.txt

Thank you!

IPv6 Protocol

Does it solve all the security problems of IPv4?

fmajstor@cisco.com