CHAPTER g

GNU Bash Shell Reference

This chapter contains the manual page for the bash shell, produced here for LightStream 2020 users.
Theshellcommand in CLI accesses the bash shell so that you can exgiex@d commands.od
can also execute LynxOS commands from the bash shell when you log in as superuser (root).

Numerous commands are built in to the shell (see “Shell Builtin Commands” later in this chapter).
Of particular interest are the commaredskill , andpwd. Thehelp command displays help
information about all the shell builtin commands.

GNU Bash Shell Reference 2-1

Name

Name
bash - GNU Bourne-Again Shell

Synopsis

bash [options][file]

Copyright

Copyright (C) 1989, 1991 by the Free Software Foundation, Inc.

Description
Bash is an sh-compatible command language interpreter that executes commands read from the
standard input or from a file. Bash also incorporates useful features fr&morthandC shells (ksh
and csh). Bash is ultimately intended to be a faithful implementation of the IEEE Posix Shell and
Tools specification (IEEE Working Group 1003.2).

Options

In addition to the single-character shell options documented in the descriptiorseftibdtin
commandbpashinterprets the following flags when it is invoked:

-cstring If the -c flag is present, commands are read fabrimg.

-i If the -i flag is present, the shellirgteractive

-S If the -sflag is present, or if no arguments remain after option processing, then commands are
read from the standard input. This option allows the positional parameters to be set when

invoking an interactive shell.

- A single- signals the end of options and disables further option processing. \nyemts after
the- are treated as filenames anguanents. An argument efis equivalent to an gument of.

Bash also interprets a number of multi-character options. To be recognized, these options must
appear on the command line before the single-character options.

-norc Do not load the personal initialization file ~/.bashrc if the shell is interactive. This is
the default if the shell name is sh.

-noprofile Do not read either /etc/profile or ~/.bash_profile. By default, bash normally reads
these files when it is invoked as a login shell.

-rcfile file Execute commands from file instead of the standard personal initialization file
~/.bashrc, if the shell is interactive.

-version Show the version number of this instance of bash when starting.

-quiet Do not be verbose when starting up (do not show the shell version or any other
information).

-login Make bash act as if it had been invoked by login(1).

2-2 LightStream 2020 NP O/S Reference Manual

Arguments

-nobraceexpansion Do not perform curly brace expansion as csh does.

-nolineediting Do not use the GNU readline library to read command lines if interactive.

Arguments

If arguments remain after option processing, and neithec ther the-s option has been supplied,

the first agument is assumed to be the name of a file containing shell commands. If bash is invoked
in this fashion$0is set to the name of the file, and the positional parameters are set to the remaining
arguments. Bash reads and executes commands from this file, then exits.

Definitions

blank A space or tab.
word A sequence of characters considered as a single unit by the shell. Also known as a token.

name Aword consisting only of alphanumeric characters and underscores, and beginning with
an alphabetic character or an underscore. Also referred to as an identifier.

metacharacter A character that, when unquoted, separates words. One of the following:
| &; () <> <space> <tab>

control operator Aokenthat performs a control function. It is one of the following symbols:
|| & &&; ;; () | <newline>

Reserved Words

Reserved wordare words that have a special meaning to the shell. The following words are
recognized as reserved when unquoted and either the first word of a simple command (see the
following section, “Shell Grammar”) or the third word ofaseor for command:

! case do done elif else esac fi for function if in then until while { }

Shell Grammar

Simple Commands

A simple commani a sequence of optional variable assignments followdaddmkseparated
words and redirections, and terminated lopatrol operator The first word specifies the command
to be executed. The remaining words are passed as arguments to the invoked command.

The return value of aimple comman its exit status, or 128if the command is terminated by
signaln.

Pipelines

A pipelineis a sequence of one or more commands separated by the cHarabieformat for a
pipeline is as follows:

['] command [| command? ...]

GNU Bash Shell Reference 2-3

Shell Grammar

Lists

The standard output cobmmands connected to the standard inputofmmand2This connection
is performed before any redirections specified by the command (see “Redirection” later in this
chapter).

If the reserved word ! precedes a pipeline, the exit status of that pipeline is the logical NOT of the
exit status of the last command. Otherwise, the status of the pipeline is the exit status of the last
command. The shell waits for all commands in the pipeline to terminate before returning a value.

Each command in a pipeline is executed as a separate process (that is, in a subshell).

A list is a sequence of one or more pipelines separated by one of the operators ;, &, &&, or ||, and
optionally terminated by one of ;, & onewline>.

Of these list operators, && has highest precedence, || has the next highest precedence, followed by
; and &, which have equal precedence.

If a command is terminated by the control operator &, the shell executes the command in the
background in a subshell. The shell does not wait for the command to finish. Commands separated
by a ; are executed sequentially; the shell waits for each command to terminate in turn.

The control operators && and || denote AND lists and OR lists, respectively. An AND list has the
following form:

command && command?2

Here,commanda2s executed if, and only ifommandeturns an exit status of zero. An OR list has
the following form:

command || command2

Here,command2s executed if and only fommandeturns a honzero exit status.

Compound Commands

A compound commarid one of the following:

® (list)
list is executed in a subshell. Variable assignments and builtin commands that affect the shell's
environment do not remain in effect after the command completes.

* {list;}
list is simply executed in the current shell environment. This is knowmgyerip command

® for name [inword;] do list; done
The list of words following in is expanded, generating a list of items. The vanafieis set to
each element of this list in turn, alist is executed each time. If word is omitted, the for
command executdist once for each positional parameter that is set (see “Parameters” later in
this chapter). The exit status is the exit status of the last command, or zero if no commands were
executed.

® casewordin [pattern[| patterr] ...) list ;;] ... esac
A casecommand first expandgord, and tries to match it against eguditernin turn. When a
match is found, the correspondiiigl is executed. After the first match, no subsequent matches
are attempted. The exit status is zero if no patterns are matches. Otherwise, it is the exit status of
the last command executedlist.

2-4 LightStream 2020 NP O/S Reference Manual

Comments

Comments

Quoting

® if list thenlist [elif list thenlist] ... [elselist] fi
Theif list is executed. If its exit status is zero, then list is executed. Otherwise, eaglif list
is executed in turn, and if its exit status is zero, the correspotigingjst is executed and the
command completes. Otherwise, #iselist is executed, if present. The exit status is the exit
status of the last command executed, or zero if no condition tested true.

® while list dolist done
until list dolist done
Thewhile command continuously executes thdigioas long as the last commandigt returns
an exit status of zero. Thmtil command is identical to tiwehile command, except that the test
is negated; the dst is executed as long as the last commathidtireturns a non-zero exit status.
The exit status of thehile anduntil commands is the exit status of the lastistocommand
executed, or zero if none was executed.

® [function] name() {list;}
This defines a function namedme The body of the function is thist of commands between
{and . Thislist is executed whenevaameis specified as the name of a simple command. The
exit status of a function is the exit status of the last command executed in the body. (See
“Functions” later in this chapter.)

In a non-interactive shell, a word beginning with # causes that word and all remaining characters on
that line to be ignored.

Quotingis used to remove the special meaning of certain characters or words to the shell. Quoting
can be used to disable special treatment for special characters, to prevent reserved words from being
recognized as such, and to prevent parameter expansion.

Each of thenetacharactersisted under “Definitions” earlier in this chapter has special meaning to
the shell and must be quoted if they are to represent themselves. There are three quoting
mechanisms: the escape character, single quotes, and double quotes.

A non-quoted backslash (\) is tbecape charactelt preserves the literal value of the next character
that follows, with the exception ofewline If a \newlinepair appears, it is treated as a line
continuation (that is, it is effectively ignored), if the backslash is non-quoted.

Enclosing characters in single quotes preserves the literal value of each character within the quotes.
A single quote may not occur between single quotes, even when preceded by a backslash.

Enclosing characters in double quotes preserves the literal value of all characters within the quotes,
with the exception of $, ‘, and \. The characters $ and * retain their special meaning within double
guotes. The backslash retains its special meaning only when followed by one of the following
characters: $, ‘, ", \, or <newline>. A double quote may be quoted within double quotes by preceding
it with a backslash.

The special parameters * and @ have special meaning when in double quotes (see the following
section, “Parameters”).

GNU Bash Shell Reference 2-5

Parameters

Parameters

A parametelis an entity that stores values, somewhat like a variable in a conventional programming
language. It can bereame a numberor one of the special characters listed in the following section,
“Special Parameters.” For the shell’'s purposesrableis a parameter denoted bypame

A parameter is set if it has been assigned a value. The null string is a valid value. Once a variable is
set, it may be unset only by using tireset builtin command (see “Shell Builtin Commands” later
in this chapter).

A variable may be assigned to by a statement of the form

name=[value]

If valueis not given, the variable is assigned the null stringvalilesundergo tilde expansion,
parameter and variable expansion, command substitution, arithmetic expansion, and quote removal.
If the variable has its -i attribute set (sklarein “Shell Builtin Commands” later in this chapter)
thenvalueis subject to arithmetic expansion even if the $[...] syntax does not apfoedrsplitting

is not performed, with the exception of $@ as explained in the following section, “Special
Parameters.” Pathname expansion is not performed.

Positional Parameters

A positional parameteis a parameter denoted by one or more digits, other than the single digit 0.
Positional parameters are assigned from the shell’s arguments when it is invoked, and may be
reassigned using tlsetbuiltin command. The positional parameters are temporarily replaced when
a shell function is executed (see “Functions” later in this chapter).

When a positional parameter consisting of more than a single digit is expanded, it must be enclosed
in braces (see “Expansion” later in this chapter).

Special Parameters

The shell treats several parameters specilifigse parameters may only be referenced; assignment
to them is not allowed.

* Expands to the positional parameters, starting from one. When the expansion occurs within double
quotes, it expands to a single word with the value of each parameter separated by the first character of
the IFS special variable. That i§*” is equivalent to $1c$2c.”, wherec is the first character of the
value of the IFS variable. If IFS is null or unset, the parameters are separated by spaces.

@ Expands to the positional parameters, starting from one. When the expansion occurs within double
guotes, each parameter expands as a separate word. T9@t"ids equivalent t§$1” “$2” ... When
there are no positional parameters, “$@” #@expand to nothing (that is, they are removed).

Expands to the number of positional parameters in decimal.

? Expands to the status of the most recently executed foreground pipeline.

- Expands to the current option flags as specified upon invocation, gtthéltin command, or those
set by the shell itself (such as the -i flag).

$ Expands to the process ID of the shell. In a () subshell, it expands to the process ID of the current shell,
not the subshell.

! Expands to the process ID of the most recently executed background (asynchronous) command.

2-6 LightStream 2020 NP O/S Reference Manual

Parameters

Shell Variables

0 Expands to the name of the shell or shell script. This is set at shell initializati@shfs invoked with
a file of commands, $0 is set to the name of that file. Otherwise, it is set to the pathname used to invoke
bash as given by argument zero.

Expands to the lastgument to the previous command, after expansion. Also set to the full pathname of

each command executed and placed in the environment exported to that command.

The following variables are set by the shell:

PPID
PWD
OLDPWD

REPLY

uib

EUID

BASH
BASH_VERSION
SHLVL

RANDOM

SECONDS

LINENO

OPTARG

OPTIND

The process ID of the shell's parent.
The current working directory as set by tdecommand.
The previous working directory as set by ¢tHeeommand.

Set to the line of input read by ttead builtin command when no arguments are
supplied.

Expands to the user ID of the current user.

Expands to the effective user ID of the current user.

Expands to the full pathname used to invoke this instaroastif.
Expands to the version number of this instanbasfi .
Incremented by one each time an instandgash is started.

Each time this parameter is referenced, a random integer is generated. The sequence
of random numbers may be initialized by assigning a valAteDOMf RANDON&
unset, it loses its special properties, even if it is subsequently reset.

Each time this parameter is referenced, the number of seconds since shell invocation
is returned. If a value is assigned to SECONDS, the value returned upon subsequent
references is the number of seconds since the assignment plus the value assigned. If
SECONDS is unset, it loses its special properties, even if it is subsequently reset.

Each time this parameter is referenced, the shell substitutes a decimal number
representing the current sequential line number (starting with 1) within a script or
function. When not in a script or function, the value substituted is not guaranteed to be
meaningful. When in a function, the value is not the number of the source line that the
command appears on (that information has been lost by the time the function is
executed), but is an approximation of the numbeiraple commandsxecuted in the
current function. If LINENO is unset, it loses its special properties, even if it is
subsequently reset.

The value of the last optiongument processed by tgetoptsbuiltin command (see
“Shell Builtin Commands” later in this chapter).

The index of the last option processed byg@toptsbuiltin command (see “Shell
Builtin Commands” later in this chapter).

GNU Bash Shell Reference 2-7

Parameters

The following variables are used by the shell. In some chasbassigns a default value to a
variable; these cases are noted below.

IFS

PATH

HOME

CDPATH

ENV

MAIL

MAILCHECK

MAILPATH

MAIL_WARNING

PS1

PS2

2-8 LightStream 2020 NP O/S Reference Manual

Thelnternal Field Separatothat is used for word splitting after
expansion and to split lines into words with tead builtin command.
The default value is:

<space><tab><newline>

The search path for commands. It is a colon-separated list of
directories in which the shell looks for commands (see “Command
Execution” later in this chapter). The default path is system-dependent,
and is set by the administrator who installs bash. A common value:

:/usr/gnu/bin:/usr/local/bin:/usr/ucb:/bin:/usr/bin:/etc:/usr/etc

Note that in some circumstances, however, a leading ‘." in PATH can
be a security hazard.

The home directory of the current user; the defagliment for theed
builtin command.

The search path for tieel builtin command. This is a colon-separated
list of directories in which the shell looks for destination directories
specified by thed command. A sample value is:

~:lusr

If this parameter is set whdzashis executing a shell script, its value

is interpreted as a filename containing commands to initialize the shell,
as in .bashrc. The value of ENV is subjected to parameter expansion,
command substitution, and arithmetic expansion before being
interpreted as a pathname. PATH is not used to search for the resultant
pathname.

If this parameter is set to a flename and the MAITLR variable is not
set,bashinforms the user of the arrival of mail in the specified file.

Specifies how often (in secondsfishchecks for mail. The default is
60 seconds. When it is time to check for mail, the shell does so before
prompting. If this variable is unset, the shell disables mail checking.

A colon-separated list of pathnames to be checked for mail. The
message to be printed may be specified by separating the pathname
from the message with a ‘?’. $_ stands for the name of the current
mailfile. Example:

MAILPATH="/usr/spool/mail/bfox?"You have mail"\
:~/shell-mail?"$_ has mail!”

Bash supplies a default value for this variable, but the location of the
user mail files that it uses is system dependent (for example,
{usr/spool/mail/$USER).

If set, and a file thadrashis checking for mail has been accessed since
the last time it was checked, the message “The mail in mailfile has
been read” is printed.

The value of this parameter is expanded (see “Prompting” later in this
chapter) and used as the primary prompt string; default is “bash\$ ”.

The value of this parameter is expanded like PS1 and used as the
secondary prompt string. The default is “> .

Parameters

PS4

NO_PROMPT_VARS

HISTSIZE

HISTFILE

HISTFILESIZE

OPTERR

PROMPT_COMMAND

IGNOREEOF
ignoreeof

HOSTTYPE

TMOUT

FCEDIT

FIGNORE

notify

history_control

The value of this parameter is expanded like PS1 and the value is
printed before each commabdshdisplays during an execution trace.
The first character of PS4 is replicated multiple times, as necessary, to
indicate multiple levels of indirection. The default is “+".

If set, the decoded prompt string does not undergo further expansion
(see “Prompting” later in this chapter).

The number of commands to remember in the command history (see
“History” later in this chapter).

The name of the file in which command history is saved. (See
“History” later in this chapter.)

The maximum number of lines contained in the history file. When this
variable is assigned a value, the history file is truncated, if necegsary
contain no more than that number of lines.

If set to the value bashdisplays error messages generated by the
getoptsbuiltin command (see “Shell Builtin Commands” later in this
chapter). OPTERR is initialized to 1 each time the shell is invoked or a
shell script is executed.

If set, the value is executed as a command prior to issuing each
primary prompt.

Controls the action of the shell on receipt of an EOF character as the
sole input. If set, the value is the number of consecutive EOF
characters typed befobmshexits. If the variable exists but does not
have a numeric value, or has no value, the default value is 10. If it does
not exist, EOF signifies the end of input to the shell. This is only in
effect for interactive shells.

Automatically set to a string that uniquely describes the type of
machine on whiclbashis executing. The default is
system-dependent.

If set to a value greater than zero, the value is interpreted as the number
of seconds to wait for input after issuing the primary prompt. Bash
terminates after waiting for that number of seconds if input does not
arrive.

The default editor for thke builtin command.

A colon-separated list of suffixes to ignore when performing filename
completion (see “Readline” later in this chapter). A filename whose
suffix matches one of the entries in FIGNORE is excluded from the list
of matched filenames. A sample value is “.0:~".

If set,bashreports terminated background jobs immediately, rather
than waiting until before printing the next primary prompt.

If set to a value afynorespaceit means do not enter lines which begin
with a <space> on the history list. If set to a valugnbredupsit

means do not enter lines which match the last entered line. If unset, or
if set to any other value than those specified here, all lines read by the
parser are saved on the history list.

GNU Bash Shell Reference 2-9

Parameters

command_oriented_history

glob_dot_filenames

allow_null_glob_expansion

histchars

nolinks

hostname_completion_file

noclobber

auto_resume

no_exit_on_failed_exec

cdable_vars

pushd_silent

2-10 LightStream 2020 NP O/S Reference Manual

If set,bashattempts to save all lines of a multiple-line command in
the same history entry. This allows easy re-editing of multi-line
commands.

If set,bashincludes filenames beginning with.d in the results of
pathname expansion.

If set,bashallows pathname patterns which match no files (see
“Pathname Expansion” later in this chapter) to expand to a null string,
rather than themselves.

The two characters which control history expansion and tokenization.
The first character is thastory expansion charactethat is, the

character which signals the start of a history expansion, norrally *

The second character is the character which signifies that the
remainder of the line is a comment, when found as the first character of
a word.

If set, the shell does not follow symbolic links when executing
commands that change the current working directory. It uses the
physical directory structure instead. By defao#ishfollows the
logical chain of directories when performing commands suci as

Contains the name of a file in the same formaeméhosts that

should be read when the shell needs to complete a hostname. You can
change the file interactively; the next time you want to complete a
hostnamebashadds the contents of the new file to the already existing
database.

If set,bashdoes not overwrite an existing file with the>&, and<>
redirection operators. This variable may be overridden when creating
output files by using the redirection operatprinstead of> (see also
the-C option to thesetbuiltin command in the “Shell Builtin
Commands” section later in this chapter).

This variable controls how the shell interacts with the user and job
control. If this variable is set, single word simple commands without
redirections are treated as candidates for resumption of an existing
stopped job. There is no ambiguity allowed; if there is more than one
job beginning with the string typed, the job most recently accessed is
selected.

If this variable exists, the shell does not exit if it cannot execute the file
specified in th@xeccommand.

If this is set, an argument to the builtin command that is not a
directory is assumed to be the name of a variable whose value is the
directory to change to.

If set, thepushd andpopd builtin commands do not print the current
directory stack after successful execution.

Expansion

Expansion

Expansion is performed on the command line after it has been split into words. There are seven kinds
of expansion performedbrace expansigrilde expansionparameter and variable expansion,
command substitutiormrithmetic expansigrword splitting andpathname expansion

The order of expansions is: brace expansion, tilde expansion, parameter, variable, command, and
arithmetic substitution (done in a left-to-right fashion), word splitting, and pathname expansion.

Only brace expansion, word splitting, and pathname expansion can change the number of words of
the expansion; other expansions expand a single word to a single word. The single exception to this
is the expansion of$@ as explained above (see the preceding section, “Parameters”).

Brace Expansion

Brace expansiois a mechanism by which arbitrary strings may be generated. This mechanism is
similar topathname expansiobut the filenames generated need not exist. Patterns to be brace
expanded take the form of an optiopsdamble followed by a series of comma-separated strings
between a pair of braces, followed by an optiguatamble The preamble is appended to the

beginning of each string contained within the braces, and the postamble is then appended to the end
of each resulting string, expanding left to right.

Brace expansions may be nested. The results of each expanded string are not sorted; left to right
order is preserved. For example, a{d,c,b}e expands into ‘ade ace abe’.

Brace expansion is performed before any other expansions, and any characters special to other
expansions are preserved in the result. It is strictly textual. Bash does not apply any syntactic
interpretation to the context of the expansion or the text between the braces.

This construct is typically used as shorthand when the common prefix of the strings to be generated
is longer than in the above example:

mkdir /usr/local/src/bash/{old,new,dist,bugs}
or

chown root /usr/{ucb/{ex,edit},lib/{ex?.?*,how_ex}}

Brace expansion introduces a slight incompatibility with traditional versions of sh, the Bourne shell.

sh does not treat opening or closing braces specially when they appear as part of a word, and
preserves them in the output. Bash removes braces from words as a consequence of brace expansion.
For example, a word entered to sh as file{1,2} appears identically in the output. The same word is
output as filel file2 after expansion by bash. If strict compatibility with sh is desiretastavtith

the -nobraceexpansion flag (see “Options” earlier in this chapter) or disable brace expansion with
the +o braceexpand option to getcommand (see “Shell Builtin Commands” later in this chapter).

Tilde Expansion

If a word begins with a tilde character (‘~’), all of the characters preceding the first slash (or all
characters, if there is no slash) are treated as a pdsgjliexame If this login nameis the null
string, the tilde is replaced with the value of the parameter HOME. If HOME is unset, the home
directory of the user executing the shell is substituted instead.

If a ‘+’ follows the tilde, the value of PWD is substituted. If a ‘-’ follows, the value of OLDPWD is
used.

Each variable assignment is checked for unquoted instances of tildes following a : or =. In these
cases, tilde substitution is also performed. Consequently, one may use pathnames with tildes in
PATH, MAILPATH, and CDPATH, and the shell exports the expanded variables.

GNU Bash Shell Reference 2-11

Expansion

Parameter Expansion

The ‘$’ character introduces parameter expansion, command substitution, or arithmetic expansion.
The parameter name or symbol to be expanded may be enclosed in braces, which are optional but
serve to protect the variable to be expanded from characters immediately following it which could
be interpreted as part of the name.

${paramete} The value oparameteiis substituted. The braces are required wieameteris
a positional parameter with more than one digit, or wisameteiis followed
by a character which is not to be interpreted as part of its name.

In each of the cases belomord is subject to tilde expansion, parameter expansion, command
substitution, and arithmetic expansion. Bash tests for a parameter that is unset or null; omitting the
colon results in a test only for a parameter that is unset.

${parameter-word} Use Default Values. Iparameteris unset or null, the expansionwérd is
substituted. Otherwise, the valuepairameteris substituted.

${parameter= word} Assign Default Values. fparameteris unset or null, the expansionwbrd is
assigned tparameter The value oparameteris then substituted. Positional
parameters and special parameters may not be assigned to in this way.

${ parameter? word} Display error if null or unset. ffarameteiris null or unset, the expansionwérd
(or a message to that effectibrd is not present) is written to the standard error
and the shell, if it is not interactive, exits. Otherwise, the valpa@meteris
substituted.

${ parameter+ word} Use Alternate Value. fparameteris null or unset, nothing is substituted,
otherwise the expansion wbrd is substituted.

${# paramete} The length in characters of the valugpafameteris substituted. |parameteris
* or @ the length substituted is the lengthtofxpanded within double quotes.

${ parametettword} Theword is expanded to produce a pattern just as in pathname expansion. If the
${ parametett#word} pattern matches the beginning of the valupashmeteythen the expansion is

the value oparameterwith the shortest matching pattern deleted (t#iecase)

or the longest matching pattern deleted (##"‘case).

${ parametepavord} Theword is expanded to produce a pattern just as in pathname expansion. If the
${ parametetovord} pattern matches a trailing portion of the valuparameteythen the expansion is

the value oparameterwith the shortest matching pattern deleted (8ecase)

or the longest matching pattern deleted (#t&%‘case).

Command Substitution

Command substituticalows the output of a command to replace the command name. There are two
forms:

$(command
or

* command

Bash performs the expansion by executioginmandand replacing the command substitution with
the standard output of the command, with any trailing newlines deleted.

When the old-style backquote form of substitution is used, backslash retains its literal meaning
except when followed by $, ‘, or \. When using thedbimangiform, all characters between the
parentheses make up the command; none are treated specially.

2-12 LightStream 2020 NP O/S Reference Manual

Expansion

Command substitutions may be nested. To nest when using the old form, escape the inner
backquotes with backslashes.

If the substitution appears within double quotes, word splitting and pathname expansion are not
performed on the results.

Arithmetic Expansion

Word Splitting

Arithmetic expansion allows the evaluation of an arithmetic expression and the substitution of the
result. The format for arithmetic expansion is:

$[expression]
Theexpressions treated as if it were within double quotes, but a double quote inside the braces is

not treated specially. All tokens in the expression undergo parameter expansion, command
substitution, and quote removal. Arithmetic substitutions may be nested.

The evaluation is performed according to the rules listed below under Arithmetic Evaluation. If
expressions invalid, bash prints a message indicating failure and no substitution occurs.

The shell scans the results of parameter expansion, command substitution, and arithmetic expansion
that did not occur within double quotes f@ord splitting

The shell treats each character of IFS as a delimiter, and splits the results of the other expansions
into words on these characters. If the value of IFS is exactly

<space><tab><newline>

the default, then any sequence of IFS characters serves to delimit words; otherwise each occurrence
of an IFS character is treated as a delimifehe value of IFS is null, no word splitting occurs. IFS
cannot be unset.

Explicit null aguments (" or ") are retained. Implicit nullguments, resulting from the expansion
of parameterghat have no values, are removed.

Note that if no expansion occurs, no splitting is performed.

Pathname Expansion

After word splitting, bash scans eaegbrd for the characters *, ?, and [, unless the -f flag has been

set. If one of these characters appears, then the word is regardeattasnpand replaced with an
alphabetically sorted list of pathnames matching the pattern. If no matching pathnames are found,
and the shell variable allow_null_glob_expansion is unset, the word is left unchanged. If the variable
is set, the word is removed if no matches are found. When a pattern is used for pathname generation,
the character “.” at the start of a name or immediately following a slash must be matched explicitly
unless the shell variable glob_dot_filenames is set. The slash character must always be matched

explicitly. In other cases, the “.” character is not treated specially.

The special pattern characters have the following meanings:
* Matches any string, including the null string.

? Matches any single character.

GNU Bash Shell Reference 2-13

Redirection

[-.] Matches any one of the enclosed characters. A pair of characters separated by a minus sign denotes
arange any character lexically between those two characters, inclusive, is matched. If the first
character following the [is a ! or a #, then any character not enclosed is matched. A - or] may be
matched by including it as the first or last character in the set.

Quote Removal
After the preceding expansions, all unquoted occurrences of the characters \, ‘, and ” are removed.

Redirection

Before a command is executed, its input and output magdiectedusing a special notation
interpreted by the shell. Redirection may also be used to open and close files for the current shell
execution environment. The following redirection operators may appear anywhaienipl&
commanar may precede or followa@mmandRedirections are processed in the order they appear
from left to right.

In the following descriptions, if the file descriptor number is omitted, and the first character of the
redirection operator is <, the redirection refers to the standard input (file descriptor 0). If the first
character of the redirection operator is >, the redirection refers to the standard output (file
descriptor 1).

The word that follows the redirection operator in the following descriptions is subjected to brace
expansion, tilde expansion, parameter expansion, command substitution, arithmetic expansion,
guote removal, and pathname expansion. If it expands to more than one word, bash reports an error

Redirecting Input

Redirection of input causes the file whose name results from the expansiand tf be opened for
reading on file descriptar, or the standard input (file descriptor Oh ifs not specified.

The general format for redirecting input is:

[nl< word

Redirecting Output

Redirection of output causes the file whose name results from the expansind tf be opened
for writing on file descripton, or the standard output (file descriptQrif n is not specified. If the
file does not exist it is created; if it does exist it is truncated to zero size.

The general format for redirecting output is:

[n] >word

If the redirection operator ig , then the variable noclobber is not consulted, and the file is created
regardless of the value of noclobber (see “Shell Variables” earlier in this chapter).

Appending Redirected Output

Redirection of output in this fashion causes the file whose name results from the expansion of
to be opened for appending on file descriptar the standard output (file descriptor 1) i§ not
specified. If the file does not exist it is created.

2-14 LightStream 2020 NP O/S Reference Manual

Redirection

The general format for appending output is:

[n>> word

Redirecting Standard Output and Standard Error

Bash allows both the standard output (file descriptor 1) and the standard error output (file descriptor
2) to be redirected to the file whose name is the expansigardiwith this construct.

There are two formats for redirecting standard output and standard error:

&>word
and

>&word

Of the two forms, the first is preferred. This is semantically equivalent to

>word 2>&1

Here Documents

This type of redirection instructs the shell to read input from the current source until a line containing
only word (with no trailing blanks) is seen. All of the lines read up to that point are then used as the
standard input for a command.

The format of here-documents is as follows:

<<[-] word here-document delimiter
No parameter expansion, command substitution, pathname expansion, or arithmetic expansion is
performed omvord. If any characters iword are quoted, the delimiter is the result of quote removal
onword, and the lines in the here-document are not expanded. Otherwise, all lines of the
here-document are subjected to parameter expansion, command substitution, and arithmetic

expansion. In the latter case, the paéwlineis ignored, and \ must be used to quote the characters
\,$,and .

If the redirection operator is <<-, then all leading tab characters are stripped from input lines and the
line containinglelimiter. This allowshere-documentwithin shell scripts to be indented in a natural
fashion.

Duplicating File Descriptors
The redirection operator

[nl<& word

is used to duplicate input file descriptorswtrd expands to one or more digits, the file descriptor
denoted by is made to be a copy of that file descriptor. If word evaluates to -, file desariptor
closed. Ifn is not specified, the standard input (file descripyds used.

The operator

[n>& word

is used similarly to duplicate output file descriptors: i not specified, the standard output (file
descriptor 1) is used.

GNU Bash Shell Reference 2-15

Functions

Opening File Descriptors for Reading and Writing

The redirection operator

[n]<> word

causes the file whose name is the expansiavroaf to be opened for both reading and writing on
file descriptom, or as the standard input and standard output if n is not specified.

Note that the order of redirections is significant. For example, the command

Is > dirlist 2>&1

directs both standard output and standard error to thdifik, while the command

Is 2>&1 > dirlist

directs only the standard output to filielist, because the standard error was duplicated as standard
output before the standard output was redirectetirlist.

Functions

A shell function, defined as described under “Shell Grammar” earlier in this clstptes a series

of commands for later execution. Howexeanctions are executed in the context of the current shell;

Nno new process is created to interpret them (contrast this with the execution of a shell script). When
a function is executed, the arguments to the function become the positional parameters during its
execution. The special parameter # is updated to reflect the change. Positional parameter O is
unchanged.

Variables local to the function may be declared with the local builtin command. Ordivarnidyples
and their values are shared between the function and its caller.

If the builtin command return is executed in a function, the function completes and execution
resumes with the next command after the function call. When a function completes, the values of
the positional parameters and the special parameter # are restored to the values they had prior to
function execution.

Function names may be listed with the -f option todbelare or typesetbuiltin commands.
Functions may be exported so that subshells automatically have them defined with the -f option to
theexport builtin.

Functions may be recursive. No limit is imposed on the number of recursive calls.

Aliases

The shell maintains a list eliasesthat may be set and unset with #lias andunalias builtin

commands. The first word of each command is checked to see if it has an alias. If so, that word is
replaced by the text of the alias. The alias name and the replacement text may contain any valid shell
input, including thenetacharacteréisted under “Definitions” earlier in this chapt&he first word

of the replacement text is tested for aliases, but a word that is identical to an alias being expanded is
not expanded a second time. This means that one may alias Is to Is -F, for instance, and bash does
not try to recursively expand the replacement text. If the last character of the alias véllamks a

then the next command word following the alias is also checked for alias expansion.

Aliases are created and listed with the alias command, and removed with the unalias command.

There is no mechanism for using arguments in the replacement text, as in csh. If arguments are
needed, a shell function should be used.

2-16 LightStream 2020 NP O/S Reference Manual

Job Control

Job Control

The rules concerning the definition and use of aliases are somewhat confusing. Bash always reads
at least one complete line of input before executing any of the commands on that line. Aliases are
expanded when a command is read, not when it is executed. Therefore, an alias definition appearing
on the same line as another command does not take effect until the next line of input is read. This
means that the commands following the alias definition on that line ardautedfby the new alias.

This behavior is also an issue when functions are executed. Aliases are expanded when the function
definition is read, not when the function is executed, because a function definition is itself a
compound command. As a consequence, aliases defined in a function are not available until after
that function is executed. To be safe, always put alias definitions on a separate line, and do not use
aliases in compound commands.

Aliases are not expanded when the shell is not interactive.

Note that for almost every purpose, aliases are superseded by shell functions.

Job contol refers to the ability to selectively staquépeniithe execution of processes and continue
(resumé their execution at a later point. A user typically employs this facility via an interactive
interface supplied jointly by the system’s terminal driver and bash.

The shell associategab with each pipeline. It keeps a table of currently executing jobs, which may
be listed with the jobs command. When bash starts a job asynchronouslyb@tkigeound, it
prints a line that looks like:

[1] 25647

indicating that this job is job number 1 and that the process ID of the single process in the job is
25647. Bash uses tiwh abstraction as the basis for job control.

To facilitate the implementation of the user interface to job control, the system maintains the notion
of acurrent terminal process group IIMembers of this process group (processes whose process
group ID is equal to the current terminal process group ID) receive keyboard-generated signals such
as SIGINT These processes are said to be ifidfegyround Backgroundorocesses are those whose
process group ID differs from the terminal’s; such processes are immune to keyboard-generated
signals. Only foreground processes are allowed to read from or write to the terminal. Background
processes which attempt to read from (write to) the terminal are sent a SIGTTIN (BUy$ignal

by the terminal driver, which, unless caught, causes the process to stop.

If the operating system on which bash is running supports job control, bash allows you to use it.
Typing thesuspendtharacter (typically ~Z, Control-Z) while a process is running causes that
process to be stopped and returns you to bash. Typingkinged suspencharacter (typically Y,
Control-Y) causes the process to be stopped when it attempts to read input from the terminal, and
control to be returned to bastotymay then manipulate the state of this job, usinggheommand

to continue it in the background, tltiecommand to continue it in the foreground, orkhie

command to kill it. A ~Z takes effect immediately, and has the additional side effect of causing
pending output and typeahead to be discarded.

There are a number of ways to refer to a job in the shell. The character % introduces a job name. Job
numbem may be referred to asr%A job may also be referred to using a prefix of the name used to
start it, or using a substring that appears in its command line. For example, %ce refers to a stopped
ce job. If a prefix matches more than one job, bash reports anusimg %?ce, on the other hand,

would refer to any job containing the string ce in its command line. If the substring matches more
than one job, bash reports an erfidre symbols %% and %+ refer to the skaibtion of theurrent

job, which is the last job stopped while it was in the foreground pidngous jobmay be referenced

using %-. In output pertaining to jobs (for example, the output gbbiscommand), the current job

is always flagged with a +, and the previous job with a -.

GNU Bash Shell Reference 2-17

Signals

Simply naming a job can be used to bring it into the foreground: %1 is a synonym for “fg %1”,
bringing job 1 from the background into the foreground. Similarly, “%1 &” resumes job 1 in the
background, equivalent to “bg %1".

The shell learns immediately whenever a job changes state. Ngraalhywaits until it is about to
print a prompt before reporting changes in agabatus so as to not interrupt any other output. If the
variable notify is sethashreports such changes immediately. (See also the -o notify option to the
setbuiltin command under “Shell Builtin Commands” later in this chapter.)

If you attempt to exibashwhile jobs are stopped, the shell prints a message warning goumay
then use the jobs command to inspect their status. If you do this, or try to exit again immediately,
you are not warned again, and the stopped jobs are terminated.

Signals

When bash is interactive, it ignores SIGTERM (so kilh® does not kill an interactive shell), and
SIGINT is caught and handled (so thatit is interruptible). In all cases, bash ignores SIGQUIT
job control is in effect, bash ignores SIGTTIN, SIGTTOU, and SIGTSTP.

Synchronous jobs started by bash have signals set to the values inherited by the shell from its parent.
Background jobs (jobs started wigh ignore SIGINT and SIGQULTCommands run as a result of
command substitution ignore the keyboard-generated job control signals SIGTTIN,&UGa&nd
SIGTSTP.

Command Execution

After a command has been split into words, if it results in a simple command and an optional list of
arguments, the following actions are taken.

If the command name contains no slashes, the shell attempts to locate it. If there exists a shell
function by that name, that function is invoked as described in the preceding “Functions” section. If
the name does not match a function, the shell searches for it in the list of shell builtins. If a match is
found, that builtin is invoked.

If the name is neither a shell function nor a builtin, and contains no slashes, bash searches each
element of the PATH for a directory containing an executable file by that name. If the search is
unsuccessful, the shell prints an error message and returns a nonzero exit status.

If the search is successful, or if the command name contains one or more slashes, the shell executes
the named program. Argument 0 is set to the name given, and the remaining arguments to the
command are set to the arguments given, if any.

If this execution fails because the file is not in executable format, and the file is not a diieistory
assumed to beshell script a file containing shell commands. A subshell is spawned to execute it.
This subshell reinitializes itself, so that théeef is as if a new shell had been invoked to handle the
script, with the exception that the locations of commands remembered by the partesstiseeer
“Shell Builtin Commands” later in this chapter) are retained by the child.

If the program is a file beginning with #!, the remainder of the first line specifies an interpreter for
the program. The shell executes the specified interpreter on operating systems that do not handle this
executable format themselves. Thguanents to the interpreter consist of a single optiogainaent

following the interpreter name on the first line of the program, followed by the name of the program,
followed by the command arguments, if any.

2-18 LightStream 2020 NP O/S Reference Manual

Environment

Environment

Exit Status

Prompting

When a program is invoked it is given an array of strings calleerthieonmentThis is a list of
namevaluepairs, of the forrmamervalue

The shell allows you to manipulate the environment in several ways. On invocation, the shell scans
its own environment and creates a parameter for each name found, automatically marking it for
exportto child processes. Executed commands inherit the environmergxpbe anddeclare -x
commands allow parameters and functions to be added to and deleted from the environment. If the
value of a parameter in the environment is modified, the new value becomes part of the environment,
replacing the old. The environment inherited by any executed command consists of thangfz|l’
environment, whose values may be modified in the shell, less any pairs removedngethe
command, plus any additions, using &xport anddeclare -xcommands.

The environment for ansimple commandr function may be augmented temporarily by prefixing
it with parameter assignments, as described in the “Parameters” section earlier in thisTdneger
assignment statements affect only the environment seen by that command.

If the -k flag is set (see theetbuiltin command under “Shell Builtin Commands” later in this
chapter), theall parameter assignments are placed in the environment for a command, not just those
that precede the command name.

For the purposes of the shell, a command which exits with a zero exit status has succeeded. An exit
status of zero indicates success. A non-zero exit status indicates failure. When a command
terminates on a fatal signal, bash uses the value ofskft&tas the exit status.

Bashitself returns the exit status of the last command executed, unless a syntax error occurs, in
which case it exits with a non-zero value. See alsexfiduiltin command under “Shell Builtin
Commands” later in this chapter.

When executing interactively, bash displays the primary prompt PS1 when it is ready to read a
command, and the secondary prompt PS2 when it needs more input to complete a command. Bash
allows the prompt to be customized by inserting a number of backslash-escaped special characters
that are decoded as follows:

\t the time

\d the date

\n CRLF

\s the name of the shell, the basenam$®{the portion following the final slash)
\w the current working directory

\W the basename of the current working directory

\u the username of the current user

\h the hostname

\i# the command number of this command

GNU Bash Shell Reference 2-19

Readline

\I the history number of this command
\$ if the effectiveUID is 0, a# , otherwise &
\nnn character code in octal

\\ a backslash

After the string is decoded, if the variable NO_PROMPT_VARS is not set, it is expanded via
parameter expansion, command substitution, arithmetic expansion, and word splitting.

Readline

This is the library that handles reading input when using an interactive shell, unless the
-nolineediting option is given. By default, the line editing commands are similar to theseaufs
A vi-style line editing interface is also available.

In this section, themacsstyle notation is used to denote keystrokes. Control keys are denoted by
C-key for example, Gxmeans ControN. Similarly, meta keys are denoted bykdy so Mx means
Meta-X. (On keyboards without a meta kblx means ES@, that is, press the Escape key then the

x key The combination M-Gemeans ESC-Controf:or press the Escape key then hold the Control
key while pressing thekey.)

The default key-bindings may be changed with an ~/.inputrc file. Other programs that use this library
may add their own commands and bindings.

For example, placing

M-Control-u: universal-argument

or

C-Meta-u: universal-argument

into the ~/.inputrc would make M-C-u execute the command universal-argument.
The following symbolic character names are recognized:
RUBOUT, DEL, ESC, NEWLINE, SPACE, RETURN, LFD, TAB.

Placing

set editing-mode vi

into a ~/.inputrc file causes bash to start with a vi-like editing mode. The editing mode may be
switched during interactive use by using the -0 option teehiguiltin command (see “Shell Builtin
Commands” later in this chapter).

You can have readline use a single line for display, scrolling the input between the two borders by
placing

set horizontal-scroll-mode On

into a ~/.inputrc file.

The following is a list of the names of the commands and the default key-strokes to get them.

2-20 LightStream 2020 NP O/S Reference Manual

Readline

Commands for Moving

beginning-of-line C-a
end-of-line C-e
forward-char C-f
backward-char C-b
forward-word M-f
backward-word M-b
clear-screen C-l

Commands for Manipulating the History

Return

accept-line Newline
or

previous-history C-p

next-history C-n

beginning-of-history M-<

end-of-history M->

reverse-search-history C-r

forward-search-history C-s

shell-expand-line M-C-e

insert-last-argument M-. or M-_

operate-and-get-next Cc-O

Move to the start of the current line.

Move to the end of the line.

Move forward a character.

Move back a character.

Move forward to the end of the next word.

Move back to the start of this, or the previous, word.

Clear the screen leaving the current line at the top of the
screen.

Accept the line regardless of where the cursor is. If this
line is non-empty, add it to the history list according to
the state of the history_control variable. If this line was
a history line, then restore the history line to its original
state.

Fetch the previous command from the history list,
moving back in the list.

Fetch the next command from the history list, moving
forward in the list.

Move to the first line in the histarthe first line entered.

Move to the end of the input histoithat is, the line you
are entering.

Search backward starting at the current line and moving
‘up’ through the history as necessary. This is an
incremental search.

Search forward starting at the current line and moving
‘down’ through the history as necessary.

Expand the line the way the shell does when it reads it.
This performs alias and history expansion. See
“History” later in this chapter.

Insert the last argument to the previous command (the
last word on the previous line).

Accept the current line for execution and fetch the next
line relative to the current line from the history file for
editing.

GNU Bash Shell Reference 2-21

Readline

Commands for Changing Text
delete-char C-d

backward-delete-char Rubout

guoted-insert C-q

orC-v
tab-insert M-TAB
self-insert a b,A L,

b,
transpose-chars C-t
transpose-words M-t
upcase-word M-u
downcase-word M-I
capitalize-word M-c

Killing and Yanking
kill-line C-k

backward-kill-line

kill-word M-d

backward-kill-word M-Rubout

unix-line-discard C-u

unix-word-rubout C-w

yank Cy

2-22 LightStream 2020 NP O/S Reference Manual

Delete the character under the cursor. If the cursor is at the
beginning of the line, and there are no characters in the line,
and the last character typed was @ed , then returreEOF

Delete the character behind the cursor. A numeric arg says to
kill the characters instead of deleting them.

Add the next character that you type to the line verbatim. This
is how to insert characters like C-q, for example.

Insert atab character.

Insert the character typed.

Drag the character before point forward over the character at
point. Point moves forward as well. If point is at the end of the
line, then transpose the two characters before point. Negative

arguments do not work.

Drag the word behind the cursor past the word in front of the
cursor moving the cursor over that word as well.

Uppercase the current (or following) word. With a negative
argument, do the previous word, but do not move point.

Lowercase the current (or following) word. With a negative
argument, do the previous word, but do not move point.

Capitalize the current (or following) word. With a negative
argument, do the previous word, but do not move point.

Kill the text from the current cursor position to the end of the line.
This saves the killed text on the kill-ring.

Kill backward to the beginning of the line. This is normally
unbound, in favor of unix-line-discard, which emulates the
behavior of the standard UNIX terminal driver.

Kill from the cursor to the end of the current word, or if between
words, to the end of the next word.

Kill the word behind the cursor.

Do what C-u used to do in UNIX line input. We save the killed
text on the kill-ring, though.

Do what C-w used to do in UNIX line input. The killed text is
saved on the kill-ring. This is different than backward-kill-word
because the word boundaries differ.

Yank the top of the kill ring into the buffer at point.

Readline

Arguments

Completing

Miscellaneous

yank-pop M-y

Rotate the kill-ring, and yank the new top. Only works following

yank or yank-pop.

digit-argument M-0, M-1, ..., Add this digit to the argument already accumulating, or start
M-- a new argument. M-- starts a negative argument.
universal-argument Do what C-u does in Emacs. By default, this is not bound to
a key.

complete TAB Attempt to perform completion on the text before point.
Bash attempts completion treating the text as a variable
(if the text begins with $), username (if the text begins
with ~), hostname (if the text begins with @), or
command (including aliases and functions) in turn. If
none of these produces a match, filename completion is
attempted.

possible-completions M-? List the possible completions of the text before point.

complete-filename M-/ Attempt filename completion on the text before point.

possible-filename-completions C-x/ List the possible completions of the text before point,
treating it as a filename.

complete-username M-~ Attempt completion on the text before point, treating it
as a username.

possible-username-completions C-x ~ List the possible completions of the text before point,
treating it as a username.

complete-variable M-$ Attempt completion on the text before point, treating it
as a shell variable.

possible-variable-completions C-x $ List the possible completions of the text before point,
treating it as a shell variable.

complete-hostname M-@ Attempt completion on the text before point, treating it
as a hostname.

possible-hostname-completions C-x @ List the possible completions of the text before point,
treating it as a hostname.

abort C-g Abort the current editing command and ring the terminal’s bell.

do-uppercase-version M-a , M-b,... Run the command that is bound to the uppercased key.

prefix-meta ESC

Metafy the next character typed. This is for people without a

meta key. ESC f is equivalent to Meta-f.

GNU Bash Shell Reference 2-23

History

undo C- Incremental undo, separately remembered for each line.

revert-line M-r Undo all changes made to this line. This is like typing the undo
command enough times to get back to the beginning.

display-shell-versio C-xC-v Display version information about the current instance of bash.
n
emacs-editing-mode C-e When in vi editing mode, this causes a switch to Emacs editing
mode.
vi-editing-mode M-C-j or When in Emacs editing mode, this causes a switch to vi editing
M-C-m mode.

History

The shell supports a history expansion feature that is similar to the history expansion in csh. This
section describes what syntax features are available.

History expansion is performed immediately after a complete line is read, before the shell breaks it
into words. It takes place in two parts. The first is determining which line from the previous history
to use during substitution. The second is to select portions of that line for inclusion into the current
one. The line selected from the previous history istrenf and the portions of that line that are

acted upon areords The line is broken into words in the same fashion as when reading input, so
that several English, or UNIX, words surrounded by quotes are considered as one word. Only
backslash (\) can quote the history escape character, which is ! by default.

Event Designators
An event designator is a reference to a command line entry in the history list.

! Start a history substitution, except when followed by a <space>, <tab>, <newline>, =, or (.

I Refer to the previous command. This is a synonym for ‘1-1".

I'n Refer to command line.
I- n Refer to the current command line mimus
I string Refer to the most recent command starting sftimg.

1? string[?] Refer to the most recent command contairstrgng.

Word Designators

A : separates the event specification from the word designator. It can be omitted if the word
designator begins with a ®, $, *, or %oWs are numbered from the beginning of the line, with the
first word being denoted by a 0 (zero).

The entire command line typed so far. This means the current command, not the previous
command, so it really is not a word designator, and does not belong in this section.

0 (zero) The zeroth word. For the shell, this is the command word.

n Thenth word.

2-24 LightStream 2020 NP O/S Reference Manual

Arithmetic Evaluation

n The first argument. That is, word 1.

$ The last argument.

% The word matched by the most recent ‘?string?’ search.

X-y A range of words; ¥ abbreviates ‘0y.

* All of the words but the zeroth. This is a synonym for ‘1-$'. It is not an error to use * if there is

just one word in the event; the empty string is returned in that case.

Modifiers

After the optional word designator, you can add a sequence of one or more of the following
modifiers, each preceded by a *:'.

h Remove a trailing pathname component, leaving only the head.

r Remove a trailing suffix of the formxxx’, leaving the basename.

e Remove all but the suffix.

t Remove all leading pathname components, leaving the tail.

p Print the new command but do not execute it. This takes effect immediately, so it should be the last

specifier on the line.

Arithmetic Evaluation

The shell allows arithmetic expressions to be evaluated, under certain circumstances (see
“Arithmetic Expansion” earlier in this chapter, and sedé¢héuiltin command under the next

section, “Shell Builtin Commands”). Evaluation is done in long integers with no check for oyerflow
though division by 0 is trapped and flagged as an error. The following list of operators is grouped
into levels of equal-precedence operators. The levels are listed in order of decreasing precedence.

- Unary minus

! Logical NOT

* /% Multiplication, division, remainder
+ - Addition, subtraction

<=>=<> Comparison
=== Equality and inequality
= Assignment

Shell variables are allowed as operands; parameter expansion is performed before the expression is
evaluated. The value of a parameter is coerced to a long integer within an expression. A shell
variable need not have its integer attribute turned on to be used in an expression.

Operators are evaluated in order of precedence. Subexpressions in parentheses are evaluated first
and may override the precedence rules above.

GNU Bash Shell Reference 2-25

Shell Builtin Commands

Shell Builtin Commands

® : [argument}
No effect; the command does nothing beyond exparatijgmentsand performing any
specified redirections. A zero exit code is returned.

® . filename
sourcefilename
Read and execute commands frilenamein the current shell environment and return the exit
status of the last command executed ffidemame Pathnames in PATH are used to find the
directory containindilename if filenamedoes not contain a slash. The file searched foXitiP
need not be executable. The current directory is searched if no file is follicHnThe return
status is the status of the last command exited within the script (true if no commands are
executed), and falsefifenameis not found.

® alias [namd=valudg ...] alias
With no arguments prints the list of aliases in the foemervalueon standard output. When
arguments are supplied, an alias is defined for aaaiewhosevalueis given. A trailing space
in valuecauses the next word to be checked for alias substitution when the alias is expanded.
alias returns true unlessrameis given for which no alias has been defined.

® Dbg [jobspet
Placejobspedn the background, as if it had been started with bspeds not present, the
shell's notion of theurrent jobis used.

® bind [-Ivd] [-g namé
bind -f filename
bind keysecfunction-name
Display current readline key and function bindings, or bind a key sequence to a readline function
or macro. The binding syntax accepted is identical to that of .inputrc, but each binding must be
passed as a separate argument; for example:

"\C-x\C-r": re-read-init-file’
Options, if supplied, have the following meanings:
-l List the names of all readline functions
-V List current function names and bindings
-d Dump function names and bindings in such a way that they can be re-read
-f filename Read key bindings frorilename

-g function Query about which keys invoke the nanfietttion

® break [n]
Exit from within a for, while, or until loop. Ifi is specified, break levels.n must be >= 1. Ih
is greater than the number of enclosing loops, all enclosing loops are exited. The return value is
0 unless the shell is not executing a loop wihierak is executed.

® Dpuiltin [shell-builtin [argument§
Execute the specified shell builtin command, passagitmentsand return its exit status. This
is useful when you wish to define a function whose name is the same as a shell builtin, but need
the functionality of the builtin within the function itself. Thd builtin is commonly redefined
this way.

2-26 LightStream 2020 NP O/S Reference Manual

Shell Builtin Commands

-X

cd [dir]

Change the current directorydo. The variable HOME is the defadit. The variable CDRTH
defines the search path for the directory contaidinglternative directory names are separated
by a colon (:). A null directory name in CBPH is the same as the current directongat is, “.”.

If dir begins with a slash (/), then CDPATH is not used. An argument of - is equivalent to

$OLDPWD. The return value is true if the directory was successfully changed; false otherwise.

command [-p] [commandarg ...]]

Runcommandvith args suppressing the normal shell function lookup. Only builtin commands
or commands found in thé\PH are executed. If the -p option is given, the searcbdomand

is performed using a default value fé¥TM that is guaranteed to find all of the standard utilities.
An agument of -- disables option checking for the rest of tharaents. If an error occurred or
commandtannot be found, the exit status is 127. Otherwise, the exit status of the command
builtin is the exit status afommand

continue [n]

Resume the next iteration of the enclosingydrile, or until loop. I is specified, resume at the
nth enclosing loopn must be >= 1. Ifi is greater than the number of enclosing loops, the last
enclosing loop (the ‘top-level’ loop) is resumed. The return value is 0 unless the shell is not
executing a loop when continue is executed.

declare [-frxi] [namé=valug]]

typeset[-frxi] [namd=valud]

Declare variables and/or give them attributes. Ihames are given, then display the values of
variables instead.

Use function names only

Make names readonly. These names cannot then be assigned values by subsequent assignment
statements.

Mark names for export to subsequent commands via the environment.

The variable is treated as an integer; arithmetic evaluation (see “Arithmetic Expansion” earlier in this
chapter) is performed when the variable is assigned a value.

Using 4 instead of *’ turns of the attribute instead. When used in a function, makess local, as with the
local command.

dirs [-1]

Display the list of currently remembered directories. Directories are added to the list with the
pushd command; th@opd command moves back up through the list. The -I option produces a
longer listing; the default listing format uses a tilde to denote the home directory.

echo[-ng] [arg ...]
Output theargs, separated by spaces:ifis specified, the trailing newline is suppressed. If the
-e option is given, interpretation of the following backslash-escaped characters is enabled:

\a Alert (bell)

\b Backspace

\c Suppress trailing newline
\f Form feed

\n New line

GNU Bash Shell Reference 2-27

Shell Builtin Commands

\r Carriage return
\t Horizontal tab
\v Vertical tab

\\ Backslash

\nnn The character whose ASCII codenisn (octal)

® enable[-n] [name...]
Enable and disable builtin shell commands. This allows the execution of a disk command which
has the same name as a shell builtin without specifying a full pathname. If -n is usedeach
is disabled; otherwis@ames are enabled. For example, to use the test fourAlliH istead of
the shell builtin version, entenable -n test

® evallarg...]
Theargsare read and concatenated together into a single command. This command is then read
and executed by the shell, and its exit status is returned as the valuevaftbenmand. If there
are noargs, or only null argumentgval returns true.

® exec|[[-] commandargument}
If commands specified, it replaces the shell. No new process is createdrghiheens become
the aguments teommandlf the first agument is, the shell places a dash in the zerogjpassed
tocommandThis is whatogin does. If the file cannot be executed for some reason, the shell exits,
unless the shell variable no_exit_on_failed_exec existsniands not specified, any
redirections take effect in the current shell.

® exit[n]
bye [n]
Cause the shell to exit with a status.off nis omitted, the exit status is that of the last command
executed. A trap on EXIT is executed before the shell terminates.

® export [-npf] [namd=word]] ...
The suppliechames are marked for automatic export to the environment of subsequently
executed commands. If tHeoption is given, thaeames refer to functions. If noames are given,
or if the-p option is supplied, a list of all names that are exported in this shell is printegh The
option causes the export property to be removed from the named variables. An argument of
disables option checking for the rest of thguanentsexport returns an exit status of true unless
an illegal option is encountered.

® fc [-eenamé[-nir] [first] [last]
fc -s [pat=rep] [cmd
Fix Command. In the first form, a range of commands fianto lastis selected from the history
list. First andlast may be specified as a string (to locate the last command beginning with that
string) or as a number (an index into the history list, where a negative number is usedisa$ an of
from the current command number)lddt is not specified, it is set to the current command for
listing (so thatc -1 -10 prints the last 10 commands) anditst otherwise. Ifiirst is not specified
it is set to the previous command for editing and -16 for listing.

The-n flag suppresses the command numbers when listingr Tlag reverses the order of the
commands. If the flag is given, the commands are listed on standard output. Otherwise, the
editor given byenames invoked on a file containing those commandesnéimes not given, the
value of the FCEDIT variable is used, and the value of EXIRTf FCEDIT is not set. If neither
variable is selyi is used. When editing is complete, the edited commands are echoed and
executed.

In the second form, the command is re-executed after the substitidtioewis performed. A
useful alias to use with this is=fc -s”, so that typing f cc” runs the last command beginning
with “cc” and typing 't” re-executes the last command.

2-28 LightStream 2020 NP O/S Reference Manual

Shell Builtin Commands

® fg [jobsped
Placejobspedn the foreground, and make it the current jolplspeds not present, the shall’
notion of thecurrent jobis used.

® getoptsoptstring namgargs]
getoptsis used by shell procedures to parse positional paramsiestsing contains the option
letters to be recognized; if a letter is followed by a colon, the option is expected to have an
argument, which should be separated from it by white space. Each time it is inyakpt,
places the next option in the shell variatdene initializing nameif it does not exist, and the
index of the next @ument to be processed into the variable OPTIND. OPTIND is initialized to
1 each time the shell or a shell script is invoked. When an option requires an argetoptst,
places that gument into the variable ORRG. The shell does not reset OPTIND automatically;
it must be manually reset between multiple callgstoptswithin the same shell invocation if a
new set of parameters is to be used.

getoptscan report errors in two ways. If the first charactesptdtringis a colonsilenterror

reporting is used. In normal operation diagnostic messages are printed when illegal options or
missing option ayjuments are encountered. If the variable OPTERR is set to 0, no error message
is displayed, even if the first characteopfstringis not a colon.

If an illegal option is seemetoptsplaces? into nameand, if not silent, prints an error message
and unsets OFARG. If getoptsis silent, the option character found is placed in 8R& and no
diagnostic message is printed.

If a required agument is not found, anygtoptsis not silent, a question mary {s placed imame
OPTARG is unset, and a diagnostic message is printgekolitsis silent, then a colon)(is
placed innameand OPTARG is set to the option character found.

getoptsnormally parses the positional parameters, but if mguenaents are given mgs, getopts
parses those insteagbtoptsreturns true if an option, specified or unspecified, is found. It returns
false if the end of options is encountered or an error occurs.

® hash[-r] [namd
For eaclhame the full pathname of the command is determined and remembered.cptien
causes the shell to fpet all remembered locations. If ngaments are given, information about
remembered commands is printed. Aguenent of- disables option checking for the rest of the
arguments. The return status is true unlasanaeis not found or an illegal option is supplied.

® help [pattern
Display helpful information about builtin commandsp#tternis specified, help gives detailed
help on all commands matchipgttern otherwise a list of the builtins is printed.

® history [n]
history -rwan [filenamé
With no options, display the command history list with line numbers. Lines listed witlaze
been modified. An gument oh lists only the last lines. If a hon-option gument is supplied,
it is used as the name of the history file; if not, the value of HISTFILE (default ~/.bash_history)
is used. Options, if supplied, have the following meanings:

-a Append the “new” history lines (history lines entered since the beginning of the current bash
session) to the history file.

-n Read the history lines not already read from the history file into the current history list. These
are lines appended to the history file since the beginning of the current bash session.

-r Read the contents of the history file and use them as the current history.

-w Write the current history to the history file, overwriting the history file’s contents.

GNU Bash Shell Reference 2-29

Shell Builtin Commands

® jobs [-Inp] [jobspec...]
jobs -x commandargs...]
The first form lists the active jobs. THeoption lists process IDs in addition to the normal
information; the-p option lists only the process ID of the job’s process group leadernThe
option displays only jobs that have changed status since last notif@usgéds given, output
is restricted to information about that job.

If the -x option is supplied, jobs replaces gogspecfound incommandr argswith the
corresponding process group ID, and exectdesnandpassing itrgs

® kill [-ssigsped -sigspet [pid | jobspeg ...
kill -I' [signun}
Send the signal named bigspedo the processes namedlig or jobspecsigspeds either a
signal name such as SIGKILL or a signal numbesigépeds a signal name, the name is case
insensitive and may be given with or without the SIG prefigigépeds not present, then
SIGTERM is assumed. An argument of -| lists the signal names. If any arguments are supplied
when -l is given, the names of the specified signals are listedgAmant of -- disables option
checking for the rest of thegqarmentskill returns true if at least one signal was successfully sent,
or false if an error occurs.

® letarg[arg...]
Eacharg is an arithmetic expression to be evaluated (see “Arithmetic Expansion” earlier in this
chapter). If the lasirg evaluates to Qet returns 1; O is returned otherwise.

® Jlocal [namé=valug]]
Create a local variable nameame and assign italue Whenlocal is used within a function, it
causes the variabtemeto have a visible scope restricted to that function and its childrgm. W
no operanddpcal writes a list of local variables to the standard output. It is an error tocase
when not within a function.

® logout
Exit a login shell.

® popd [+/-n]
Removes entries from the directory stack. With no arguments, removes the top directory from
the stack, and performsd to the new top directory.

+n Removes theth entry counting from the left of the list showndiys, starting with zero. For
examplepopd +0removes the first directorgppd +1the second.

-n Removes thath entry counting from the right of the list showndiss, starting with zero. For
examplepopd -0removes the last directoyppd -1the next to last.

If the variable pushd_silent is unset anddbed command is successfuldis is performed as
well.

® pushddir
pushd +-n
Adds a directory to the top of the directory stack, or rotates the stack, making the new top of the
stack the current working directory. With no arguments, exchanges the top two directories.

+n Rotates the stack so that tith directory (counting from the left of the list showndiss) is at the
top.

-n Rotates the stack so that tfite directory (counting from the right) is at the top.

dir Addsdir to the directory stack at the top, making it the new current working directory.

2-30 LightStream 2020 NP O/S Reference Manual

Shell Builtin Commands

If the variable pushd_silent is not set andghehd command is successfuldas is performed
as well.

pwd
Print the absolute pathname of the current working directory. The path printed contains no
symbolic links (but see the description of nolinks under “Shaglla¥les” earlier in this chapter).

read [-r] [name...]

One line is read from the standard input, and the first word is assigned to the first name, the
second word to the second name, and so on, with leftover words assigned to the last name. Only
the characters in IFS are recognized as word delimiters. The return code is zero, unless
end-of-file is encountered. If theoption is given, a backslash-newline pair is not ignored, and

the backslash is considered to be part of the line.

readonly [-pf] [name...]

The given names are marked readonly and the values of these names may not be changed by
subsequent assignment. If th®ption is supplied, the functions corresponding to the names are
so marked. If no @uments are given, or if thp option is supplied, a list of all readonly names

is printed. An argument 6f disables option checking for the rest of the arguments.

return [n]

Causes a function to exit with the return value specified Hyn is omitted, the return status is

that of the last command executed in the function body. If used outside a function, but during
execution of a script by the . (source) command, it causes the shell to stop executing that script
and return eithem or the exit status of the last command executed within the script as the exit
status of the script.

set[-aefhknotuvxIldCH] [arg ...]

-a Automatically mark variables which are modified or created for export to the environment
of subsequent commands.

-e Exit immediately if asimple-comman¢see “Shell Grammar” earlier in this chapter) exits
with a non-zero status. The shell does not exit if the command that fails is pactraifl an
or while loop, part of arif statement, part of&& or||list, or if the command’s return
value is being inverted by means! of

-f Disable pathname expansion.

-h Locate and remember function commands as functions are defined. Function commands
are normally looked up when the function is executed.

-k All keyword arguments are placed in the environment for a command, not just those that
precede the command name.

-m Monitor mode. Job control is enabled. This flag is on by default for interactive shells on
systems that support it (see “Job Control” earlier in this chapter). Background processes
run in a separate process group and a line containing their exit status is printed upon their
completion.

-n Read commands but do not execute them. This may be used to check a shell script for
syntax errors. This is ignored for interactive shells.

-o option Theoptioncan be one of the following:
allexport Same as -a.
braceexpand The shell performs curly brace expansion (see “Brace Expansion” earlier

in this chapter). This is on by default.

GNU Bash Shell Reference 2-31

Shell Builtin Commands

emacs Use an Emacs-style command line editing interface.

errexit Same as -e.

histexpand Same as -H.

ignoreeof The effect is as if the shell command IGNOREEOF=10 had been
executed (see “Shell Variables” earlier in this chapter).

monitor Same as -m.

noclobber Same as -C.

noexec Same as -n.

noglob Same as -f.

nohash Same as -d.

notify The effect is as if the shell command notify= had been executed (see

“Shell Variables” earlier in this chapter).

nounset Same as -u.
verbose Same as -v.
Vi Use a vi-style command line editing interface.
xtrace Same as -X.

If no option-namas supplied, the values of the current options are printed.

-t Exit after reading and executing one command.

-u Treat unset variables as an error when performing parameter expansion. If expansion is
attempted on an unset variable, the shell prints an error message, and, if not interactive,
exits with a non-zero status.

-v Print shell input lines as they are read.

-X After expanding each simple-command, bash displays the expanded value of PS4,
followed by the command and its expanded arguments.

-l Save and restore the binding of name foraname [in word] command (see “Shell
Grammar” earlier in this chapter).

-d Disable the hashing of commands that are looked up for execution. Normally, commands
are remembered in a hash table, and once found, do not have to be looked up again.

-C The effect is as if the shell commandclobber=had been executed (see “Shell
Variables” earlier in this chapter).

-H Enable ! style history substitution. This flag is on by default.

-- If no arguments follow this flag, then the positional parameters are unset. Otherwise, the
positional parameters are set to the args, even if some of them begin with a -.

- Signal the end of options, cause all remaining args to be assigned to the positional

parameters. The -x and -v options are turned off. If there are no args, the positional
parameters remain unchanged.

2-32 LightStream 2020 NP O/S Reference Manual

Shell Builtin Commands

Using+ rather than causes these flags to be turnddTdie flags can also be specified as options

to an invocation of the shell. The current set of flags may be fousidAffter the option

arguments are processed, the remaining args are treated as values for the positional parameters
and are assigned, in order, to $1, $2, ... $9. If no options or args are supplied, all shell variables
are printed. The return status is always true unless an illegal option is encountered.

shift [n]
The positional parameters fram1 ... are renamed to $1 ...nl not given, it is assumed to be
1. The exit status is 1ifis greater than $#; otherwise 0.

suspend[-f]
Suspend the execution of this shell until it receives a SIGCONT signat. djiion says not to
complain if this is a login shell; just suspend anyway.

testexpr

[expi

Return a status of O (true) or 1 (false) depending on the evaluation of the conditional expression
expr. Expressions may be unary or bindgyary expressions are often used to examine the status
of a file. There are string operators and numeric comparison operators as well.

-b file True iffile exists and is block special.

-cfile True iffile exists and is character special.

-d file True iffile exists and is a directory.

-efile True iffile exists.

-f file True iffile exists and is a regular file.

-gfile True iffile exists and is set-group-id.

-k file True iffile has its “sticky” bit set.

-L file True iffile exists and is a symbolic link.

-p file True iffile exists and is a named pipe.

-r file True iffile exists and is readable.

-sfile True iffile exists and has a size greater than zero.

-Sfile True iffile exists and is a socket.

-t [fd] True if fd is opened on a terminal.ftf is omitted, it defaults to 1 (standard
output).

-u file True iffile exists and its set-user-id bit is set.

-w file True iffile exists and is writeable.

-X file True iffile exists and is executable.

-0 file True iffile exists and is owned by the effective user ID.

-G file True iffile exists and is owned by the effective group ID.

filel-nt file2 True iffilelis newer (according to modification date) tfiée?.

filel -ot file2 True iffilelis older tharfile2.

GNU Bash Shell Reference 2-33

Shell Builtin Commands

filel-effile True iffilel andfile2 have the same device and inode numbers.
-z string True if the length oftring is zero.

-n string

string True if the length o§tring is non-zero.

string1= string2 True if thestrings are equal.

stringl!=string2 True if thestrings are not equal.

I expr True ifexpris false.

exprl-aexpr2 True if bothexprlAND expr2are true.

exprl-oexpr2 True if either exprl OR expr2 is true.

argl OP arg2 OBRs one of -eq, -ne, -It, -le, -gt, or -ge. These arithmetic binary operators

return true ifarglis equal, not-equal, less-than, less-than-or-equal,
greater-than, or greater-than-or-equal taay®, respectivelyArgl andarg2
may be positive integers, negative integers, or the special expresstiamg;|
which evaluates to the length sifing.
® times
Print the accumulated user and system times for the shell and for processes run from the shell.

® trap [arg] [sigspet
The commandrg is to be read and executed when the shell receives sigsigisgc|f arg is
absent or -, all specified signals are reset to their original values (the values they had upon
entrance to the shell). If arg is the null string, this signal is ignored by the shell and by the
commands it invokesigspeds either a signal name in <signal.h>, or a signal nunifb@gspec
is EXIT (0) the commandrg is executed on exit from the shellitt¥no argumentdrap prints
the list of commands associated with each signal number. The -I option causes the shell to print
a list of signal names and their corresponding numbers. An argument of -- disables option
checking for the rest of theqarments. Signals ignored upon entry to the shell cannot be trapped
or reset. Trapped signals are reset to their original values in a child process when it is created.
The return status is false if either the trap name or number is invalid; otheapiseturns true.

® type[-all] [-type | -path] [name...]
With no options, indicate how eaolmewould be interpreted if used as a command name. If
the-type flag is usedtype prints a phrase which is onealfas, keyword function builtin, orfile
if nameis an alias, shell reserved word, function, builtin, or disk file, respectl¥éte name is
not found, then nothing is printed, and an exit status of false is returneddathdlag is used,
type either returns the name of the disk file that would be executedniéwere specified as a
command name, or nothing-tiype would not returrfile. If a command is hasheghath prints
the hashed value, not necessarily the file that appears first in PATH-dfltheag is usedtype
prints all of the places that contain an executable naraed This includes aliases and
functions, if and only if thepath flag is not also used. The table of hashed commands is not
consulted when usingll. type acceptsa, -t, and-p in place ofall, -type, and-path,
respectively. An argument ef disables option checking for the rest of the argumégis.
returns true if any of the arguments are found, false if none are found.

® ulimit [-SHacdfmstpn[limit]]
ulimit provides control over the resources available to the shell and to processes started by it, on
systems that allow such control. The valuéiroft can be a number in the unit specified for the
resource, or the value unlimited. THeandS options specify that the hard or soft limit is set for
the given resource. A hard limit cannot be increased once it is set; a soft limit may be increased
up to the value of the hard limit. If neithidrnor S is specified, the command applies to the soft

2-34 LightStream 2020 NP O/S Reference Manual

Shell Builtin Commands

limit. If limit is omitted, the current value of the soft limit of the resource is printed, unldss the
option is given. When more than one resource is specified, the limit name and unit is printed
before the value. Other options are interpreted as follows:

-a All current limits are reported

-C The maximum size of core files created

-d The maximum size of a process’s data segment

-f The maximum size of files created by the shell

-m The maximum resident set size

-s The maximum stack size

-t The maximum amount of cpu time in seconds

-p The pipe size in 512-byte blocks (this may not be set)

-n The maximum number of open file descriptors (most systems do not allow this value to be set,
only displayed)

The argument- disables option checking for the rest of thguanents. imit is given, it is the
new value of the specified resource (th@ption is display only). If no option is given, thén
is assumed. dues are in 1024-byte increments, excepttfarhich is in seconds, ang, which
is in units of 512-byte blocks.

umask [-S] [modd

The user file-creation mask is settode If modebegins with a digit, it is interpreted as an octal
number; otherwise it is interpreted as a symbolic mode mask similar to that accepted by
chmod(1). Ifmodeis omitted, or if theS option is supplied, the current value of the mask is
printed. The'S option causes the mask to be printed in symbolic form; the default output is an
octal number. An argument efdisables option checking for the rest of the arguments.

unalias [name...]
Removenames from the list of defined aliases. The return value is true umdgssis not a
defined alias.

unset[-fv] [name...]

For eaclname remove the corresponding variablegiven thef option, function. An ggument

of -- disables option checking for the rest of the arguments. Note that PATH, IFS, PPID, PS1,
PS2, UID, and EUID cannot be unset. If any of RANDOM, SECONDS, or LINENO are unset,
they lose their special properties, even if they are subsequently reset. The exit status is true unless
the variablenamedoes not exist or is non-unsettable.

wait [n]
Wait for the specified process and report its termination stataay be a process ID or a job

specification; if a job spec is given, all processes in that job’s pipeline are waitedhfigrnkit
given, all currently active child processes are waited for, and the return code is zero.

GNU Bash Shell Reference 2-35

Invocation

Invocation

See Also

Files

Authors

Bug Reports

A login shellis one whose first character of argument zero i®aone started with théogin flag.

An interactive shells one whose standard input and output are both connected to terminals (as
determined by isatty(3)), or one started with-ihitag. PS1 is set and $- includes i if bash is
interactive, allowing a way to test this state from a shell script or a startup file.

Login shells: On login: Ifetc/profile exists, source it.
If ~/.bash_profile exists, source it,
else if ~/.bash_login exists, source it,
else if ~/.profile exists, source it.

On logout: If ~/.bash_logout exists, source it.
Non-login interactive shells: On startup: If ~/.bashrc exists, source it.
Non-interactive shells: On startup If the environment variable ENV is non-null,

expand it and source the file it names.

The Gnu Readline LibrarBrian FoxThe Gnu History LibraryBrian FoxA System V Compatible
Implementation of 4.2BSD Job CarifrDavid LennerHow to wear weil pants for fun and pfit,
Brian Fox sh(1), ksh(1), csh(1)

/bin/bash Théash executable

letc/profile The system-wide initialization file, executed for login shells
~/.bash_profile The personal initialization file, executed for login shells
~/.bashrc The individual per-interactive-shell startup file

~/.inputrc Individual Readline initialization file

Brian Fox, Free Software Foundation (primary author) bfox@ai.MIT.Edu

Chet Ramey, Case Western Reserve University chet@ins.CWRU.Edu

If you find a bug in bash, you should report it. But first, you should make sure that it really is a bug,
and that it appears in the latest version of bash that you have.

Once you have determined that a bug actually exists, mail a bug report to
bash-maintainers@ai.MIEdu. If you have a fix, you are welcome to mail that as well! Suggestions
and ‘philosophical’ bug reports may be mailed to bug-bash@ai.MIT.Edu or posted to the Usenet
newsgroup gnu.bash.bug.

2-36 LightStream 2020 NP O/S Reference Manual

Bugs

ALL bug reports should include the following:

® The version number of bash

® The hardware and operating system

® The compiler used to compile

® A description of the bug behavior

® A short script or ‘recipe’ which exercises the bug

Comments and bug reports concerning this manual page should be directed to
chet@ins.CWRU.Edu.

Bugs
It is too big and too slow.

There are some subtlefdifences between bash and traditional versions of sh, mostly because of the
POSIX specification.

Aliases are confusing in some uses.

GNU Bash Shell Reference 2-37

Bugs

2-38 LightStream 2020 NP O/S Reference Manual

