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Abstract 

There are several algorithms to solve the integrated process planning and scheduling (IPPS) 

problem (i.e., flexible job shop scheduling with process plan flexibility) in the literature.  All 

the existing algorithms for IPPS are heuristic-based search methods and no research has 

investigated the use of exact solution methods for this problem. We develop several 

decomposition approaches based on the logic-based Benders decomposition (LBBD) algorithm. 

Our LBBD algorithm allows us to partition the decision variables in the IPPS problem into two 

models, master-problem and sub-problem. The master-problem determines process plan and 

operation-machine assignment, while the sub-problem optimizes sequencing and scheduling 

decisions. To achieve faster convergence, we develop two relaxations for the optimal makespan 

objective function and incorporate them into the master-problem. We analyze the performance 

and further enhance the algorithm with two ideas, a Benders optimality cut based on the critical 

path and a faster heuristic way to solve the sub-problem. 16 standard benchmark instances 

available in the literature are solved to evaluate and compare the performances of our algorithms 

with those of the state-of-the-art methods in the literature. The proposed algorithm either results 

in the optimal solution or improves the best-known solutions in all the existing instances, 

demonstrating its superiority to the existing state-of-the-art methods in literature. 

 

Keywords: Integrated process planning and scheduling problem, Benders decomposition, 

optimality cut, critical path. 

 

1. Introduction 

Effective process planning and scheduling are crucial for the productivity of any manufacturing 

system. A process plan specifies raw materials and parts, develops production plans and 

determines processes and operations that convert raw materials to final goods. The outcome of 

process planning includes configuration of suitable machines, tools, and operations arrangement 

for a product. Process planning connects product design to manufacturing. On the other hand, 

scheduling specifies both operation-machine assignment and operation sequence for a given 
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process plan of products including precedence relationships among operations. Therefore, 

scheduling is the link between processes preparation and putting them into action. 

Although there is a close relationship between process planning and scheduling, the integration 

of them is still a challenge for both researchers and practitioners (Sugimura et al., 2001). In 

classical approaches, process planning and scheduling decisions are carried out sequentially, where 

scheduling is conducted separately after process plans are fixed. Due to recent advances in 

manufacturing systems and increase in overall flexibility, an increased number of process plans 

can be used to manufacture a product. Therefore, the integration of process planning and 

scheduling has become even more important to improve productivity of modern manufacturing 

systems. The trend in recent publications in production planning related fields shows that academia 

follows this integration and becomes more attracted to study the integrated process planning and 

scheduling (IPPS) system (Lee and Kim, 2001; Li et al., 2012). 

The IPPS problem belongs to the class of NP-hard problems (Khoshnevis and Chen, 1991; Kis, 

2003). The standard scheduling methods have difficulty in solving the IPPS problem. Over the last 

two decades, researchers have used various approaches to tackle the IPPS problem. Although, as 

it is reviewed in the next section, there are several papers dealing with the IPPS problem, they all 

develop solution approaches based on heuristic search methods (i.e., constructive heuristics and 

metaheuristics).  

To the best of our knowledge, there is still no solution algorithm based on exact methods. This 

paper proposes an effective algorithm based on logic-based Benders decomposition to solve the 

IPPS problem. This is the first application of the Benders decomposition algorithm for the IPPS 

problem. The original problem is divided into two smaller problems: master-problem and sub-

problem. An optimality cut is generated to exchange information between the two smaller 

problems. Then we develop two expediting procedures (a Benders optimality cut based on the 

critical path, and a faster heuristic way to solve the sub-problem) to further enhance the algorithm. 

Our proposed algorithm is evaluated by comparing its performance with performances of existing 

solution methods from the literature over standard benchmark sets. The experiments show the 

superiority of our algorithm: It either results in the optimal solutions or improves the best-known 

solutions for all the benchmark instances. The proposed algorithm can obtain small optimality gaps 

in short computational time.  Hence, it provides the state-of-the-art results for the IPPS problem. 

In addition to scientific novelties, we present an effective method that is applicable to 

manufacturing industries with type-1 IPPS specifications. The proposed method can help 

companies to reduce idle time of resources and increase overall productivity. Productivity is one 

of the most important performance measures in all manufacturing systems, and makespan 

scheduling is known to be an effective tool in this regard (Pinedo, 2008; Seidel and Arndt, 1998). 

Makespan scheduling ensures higher resource utilization with zero-dollar added cost, making 

makespan minimization as inevitable part of every production schedule management. To achieve 

minimum makespan, unnecessary idle time of resources needs to be reduced as much as possible. 

It is well-known that resources in manufacturing systems are cost-intensive, and every single unit 
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of idle time of resources corresponds to waste of resource (i.e., capital). Thus, removing 

unnecessary idle times result in direct savings for manufacturers.  

The rest of this paper is organized as follows. Section 2 provides the literature review of the 

IPPS. The mathematical definition and formulation of the IPPS are presented in Section 3. Section 

4 develops our logic-based Benders decomposition algorithm. We evaluate the performance of the 

algorithm Section 5, and Section 6 concludes the paper.  

2. Literature reviews 

Process planning and scheduling are two influential and complementary components of any 

manufacturing system. There are three decisions in the IPPS problems: (i) process plan selection, 

(ii) machine assignment, and (iii) scheduling.  The traditional idea is to solve the problem by a 

two-phase approach: select the process plan first and then assign and schedule operations 

accordingly (Weintraub et al., 1999; Li et al., 2010). That is, a process plan for each job is 

determined and then jobs with fixed process plans are scheduled. Chryssolouris et al. (1984) 

discuss the flexibility coming out of the integration of process planning and scheduling. Moreover, 

Li et al., (2010b) shows that the integrated approaches are more effective. 

The IPPS problems are either type-1 or type- 2 (Jin et al. [1]). In type-1, there is a set of process 

plans predetermined in advance for each job, and the decision is to select one process plan for each 

job. In type- 2, each job is represented by a graph with precedence relations among the operations. 

Thus, jobs’ process plans are inferred from this graph.  

Applications of IPPS problems are discussed in Liu et al. (2016) and Petrović et al. (2016). 

Based on real case examples, there are different standard benchmark sets in the literature. For 

example, Altarazi, and Yasin (2015) describe an example form electrical wires and power cable 

industry. Li et al. (2002) present different examples form machinery and manufacturing. The early 

benchmark sets commonly include small size instances (Nasr and Elsayed, 1990; Hoitomt et al., 

1993; Lee and Dicesare, 1994; Sundaram and Fu, 1988). The more recent benchmark sets include 

larger instances (Dong and Sun, 2006; Jaint et al., 2006, Kim et al., 2003; Chan et al., 2012). 

Table1 summarizes the available benchmark sets for type-1 and type-2 IPPS problems. N and M 

are the numbers of jobs and machines, respectively. Benchmark sets B1-B7 include relatively 

smaller instances with less than 8 jobs while benchmark sets B8-B11 consist of larger instances 

up to 100 jobs. Benchmark set B10 is also designed for the type-2 IPPS and the other benchmark 

sets for the type-1 IPPS. 
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Table 1. Benchmark sets for IPPSs 

Benchmark Publication 
Size 

No. IPPS Type 
N M 

B1 Nasr and Elsayed (1990) 4 6 1 1 

B2 Sundaram and Fu (1988) 5 3 1 1 

B3 Lee and Dicesare (1994) 5 3 1 1 

B4 Moon et al. (2008) 5 5 1 1 

B5 Li et al. (2010b) 6 5 2 1 

B6 Li et al. (2010a) 8 5 1 1 

B7 Lee et al. (2002) 8 6 1 1 

B8 Dong and Sun (2007) 10 10 1 1 

B9 Jain et al. (2006) 8-16 4 6 1 
B10 Kim et al. (2003) 6-18 15 24 2 

B11 Chan et al. (2008) 100 10 1 1 

 

There are several papers in the literature attempting to develop solution methods for the IPPS 

problem. They commonly evaluate their proposed methods over the standard benchmark instances 

shown in Table 1. Since the IPPS problem is NP-hard, the available solution methods mainly fall 

into the category of heuristics and metaheuristics. Tables 2 and 3 show the papers that solve type-

1 and type-2 benchmark sets of the IPPS, respectively. For last 15 years, the IPPS literature has 

been an active field of research and almost all researches in this field focus on metaheuristics. The 

small benchmark sets B1-B7 are mostly solved to optimality by solution algorithms. But, 

benchmark sets B8, B9 and B11 are harder, and almost none of them are optimally solved. Later 

in section 5, the best solution obtained for each benchmark instance is discussed. 

 

Table 2. Available literature on type-1 IPPS. 

Publication Algorithm Benchmarks 

Lian et al. (2012) Imperialist competitive algorithm (ICA) B1, B2, B4, B5, B6, B9, B11 

Li et al. (2010b) Evolutionary algorithm (EA) B1, B2, B5, B9 

Chaudhry and Usman (2017) spreadsheet based genetic algorithm (SBGA) B1, B2, B4, B5, B7 

Lihong and Shengping (2012) Improved genetic algorithm (GA) B2, B3, B4,  

Ausaf et al. (2015) Priority based heuristic (PBH) B2, B3,  

Li et al. (2010a) Agent-based method (AB) B2, B3, B11 

Naseri and Afshari (2012) Hybrid genetic algorithm (HGA) B2, B4, B5, B7,  

Moon et al. (2008) Evolutionary search approach (ESA) B2, B4,  

Jin et al. (2015) Hybrid honey bee mating optimization (HBMO) B2, B5, B9 

Leung et al. (2010) Ant colony optimization (ACO) B3 

Chan et al. (2008) Genetic algorithms with dominant genes (GADG) B3, B11 

Lee et al. (2002) Genetic algorithm (GA1) B7 

Dong and Sun (2007) Immune genetic algorithm (IGA) B8 

Zhu et al. (2009) Particle swarm optimization (PSO) B8 

Zhang et al. (2016) Genetic algorithm (GA2) B8 

Zhao and Wu (2001) Simple genetic algorithm (SGA) B11 
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Table 3. Available literature on type-2 IPPS. 

Publication Algorithm 

Kim et al. (2003) Symbiotic evolutionary algorithm 

Lian et al. (2012) Imperialist competitive algorithm 

Lihong and Shengping (2012) Improved genetic algorithm 

Ausaf et al. (2015) Priority based heuristic 

Jin et al. (2015) Hybrid honey bee mating optimization 

Leung et al. (2010) Ant colony optimization 

Zhang and Wong (2016) Ant colony optimization 

Liu et al. (2018) Quantum-inspired hybrid algorithm 

Li et al. (2010c) Hybrid algorithm 

Li et al. (2012) Active learning genetic algorithm 

Zhang and Wong (2015) Object-coding genetic algorithm 

 

As generalization of IPPS problems, Haddadzade et al. (2016) and Zhang and Wong (2016) 

consider the setup times in the IPPS, Jin et al. (2016a) and Luo et al. (2017) study the multi-

objective IPPS, Jin et al. (2016b) consider the IPPS with uncertain processing times, Jin et al. 

(2017) investigate the impact of rescheduling in the IPPS, Yin et al. (2017) consider the dynamic 

IPPS, and Zhang et al. (2016, 2017) study the distributed IPPS. 

As reviewed, IPPS problems are well-known optimization problems. Although there are many 

papers proposing algorithms to solve the IPPS problems, there are the following research gaps in 

the literature: 

1. To evaluate the performances of solution methods for the IPPS, there are several standard 

benchmark sets in the literature but unfortunately there is no comprehensive performance 

comparison among these algorithms. Our review shows that there are even some papers 

providing worse results than the state-of-the-art methods. Most of the benchmark sets in the 

literature are not optimally solved yet. For benchmark sets with larger instances, it is likely 

that there is still some room for improving the best-known solutions.  

2. Due to the in-built hardness of the IPPS problem, research community has focused on using 

random-based metaheuristics to solve the problem. Although some metaheuristics are 

successful at escaping from local optima to some extent, they are commonly stuck in local 

optima at the end of the search, especially when there are two independent decision dimensions 

like the ones existent in the IPPS problem (i.e., assignment and sequencing). In this case, the 

encoding scheme has two independent parts, one for each decision, and this increases the 

probability of getting into a local optimum. Another weak point of metaheuristics is that they 

provide no theoretical optimality gap for their performance.  
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3. The IPPS problem is decomposable into two more trackable subproblems. These two 

subproblems, master and slave problems, can be solved more effectively than solving the large 

original IPPS problem which is commonly done by metaheuristics.  

 

Therefore, we decided to develop a Benders’ decomposition algorithm to overcome these 

shortcomings. In the Benders decomposition, the slave problem needs to be a continuous linear 

problem, where in IPPS problem decomposition, it is more effective to have the slave problem as 

an integer program. Thus, the logic-based Benders’ decomposition is applied. Besides the 

algorithm, we provide a comprehensive review of the related literature on benchmark sets and 

compare the performance of the proposed algorithm with the ones from the literature. The 

proposed algorithm either results in the optimal solutions or improves the best-known solutions 

for all the benchmark sets; hence, it provides the state-of-the-art results for the type-1 IPPS 

problem. 

3. Problem definition and formulation 

A typical IPPS problem can be described as follows. There are n jobs where each requires a set of 

operations for completion. There are m machines to process these operations. There are alternative 

manufacturing process plans for each job, and the machines are flexible and can process different 

operations. The objective is to select one process plan for each job, assign each operation 

associated to that process plan to one of eligible machines, and to sequence operations of all jobs 

on the machines to minimize the makespan while meeting the precedence relations among 

operations of each job. Moreover, the following assumptions are commonly established. Jobs are 

independent. Operation preemption is not allowed, and each machine can handle only one job at a 

time. The operations within a process plan of a job are sequentially ordered. All jobs and machines 

are available at time zero. After a job is processed on a machine, it is immediately transported to 

the next machine on its process, and the transmission time is negligible. Setup time for the 

operations on the machines is independent of the operation sequence and is included in the 

processing times. This problem is in fact the flexible job shop scheduling with process plan 

flexibility as named by Özgüven et al. (2010). But, it is conventionally called type-1 IPPS problem. 

The mathematical model of the type-1 IPPS problem is given as follows (Jin et al., 2015). 

 

Notations and parameters  

𝑖, 𝑖′ index for jobs,  

𝑗, 𝑗′ index for operations, 

𝑘, 𝑘′ index for machines,  

𝑙, 𝑙′ index for process plans, 

𝑂𝑖,𝑙,𝑗 j-th operation of job i on the job’s l-th process plan 

𝑁 set of all the jobs 

𝑀 set of all the machines 
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𝑇𝑖 set of process plans of job i 

𝑁𝑂𝑖,𝑙 set of operations for l-th process plan of job i 

𝑅𝑖,𝑙,𝑗 set of available machines for 𝑂𝑖,𝑙,𝑗 

𝑝𝑖,𝑗,𝑘,𝑙 processing time of 𝑂𝑖,𝑙,𝑗 on machine k 

𝐴 a large positive integer 

 

Decision variables 

𝐶𝑚𝑎𝑥 makespan. 

𝑋𝑖,𝑙 binary variable taking value 1, if the l-th process plan of job i is selected; 0, otherwise. 

𝑍𝑖,𝑗,𝑘,𝑙 binary variable taking value 1, if 𝑂𝑖,𝑙,𝑗 is processed on machine k, 0, otherwise. 

𝑌𝑖,𝑗,𝑙,𝑖′,𝑗′,𝑙′ binary variable taking value 1, if 𝑂𝑖,𝑙,𝑗 is processed directly or indirectly after 𝑂𝑖′,𝑙′,𝑗′; 0, 

otherwise. 

𝐶𝑖,𝑗 continuous variable for the completion time of the j-th operation of job i 

 

Objective 

𝑚𝑖𝑛   𝐶𝑚𝑎𝑥 (1) 

subject to: 

∑ 𝑋𝑖,𝑙 = 1𝑙∈𝑇𝑖
  ∀𝑖∈𝑁 (2) 

∑ 𝑍𝑖,𝑗,𝑘,𝑙 + (1 − 𝑋𝑖,𝑙) = 1𝑘∈𝑅𝑖,𝑙,𝑗
  ∀𝑖∈𝑁,𝑙∈𝑇𝑖,𝑗∈𝑁𝑂𝑖,𝑙

 (3) 

𝐶𝑖,0 = 0 ∀𝑖∈𝑁 (4) 

𝐶𝑖,𝑗 ≥ 𝐶𝑖,𝑗−1 + ∑ 𝑝𝑖,𝑗,𝑘,𝑙𝑍𝑖,𝑗,𝑘,𝑙𝑘∈𝑅𝑖,𝑙,𝑗
  ∀𝑖∈𝑁,𝑙∈𝑇𝑖,𝑗∈𝑁𝑂𝑖,𝑙,𝑗≥1 (5) 

𝐶𝑖,𝑗 ≥ 𝐶𝑖′,𝑗′ + 𝑝𝑖,𝑗,𝑘,𝑙 − 𝐴(3 − 𝑌𝑖,𝑗,𝑙,𝑖′,𝑗′,𝑙′ − 𝑍𝑖,𝑗,𝑘,𝑙 − 𝑍𝑖′,𝑗′,𝑘′,𝑙′  ) ∀𝑖∈𝑁,𝑖<|𝑛|,𝑖′>𝑖,𝑙∈𝑇𝑖,𝑙′∈𝑇𝑖
′,𝑗∈𝑁𝑂𝑖,𝑙,

𝑗′∈𝑁𝑂𝑖′,𝑙′,𝑘∈𝑅𝑖,𝑙,𝑗∩𝑅𝑖′,𝑙′,𝑗′

  (6) 

𝐶𝑖′,𝑗′ ≥ 𝐶𝑖,𝑗 + 𝑝𝑖′,𝑗′,𝑘′,𝑙′ − 𝐴(2 + 𝑌𝑖,𝑗,𝑙,𝑖′,𝑗′,𝑙′ − 𝑍𝑖,𝑗,𝑘,𝑙 − 𝑍𝑖′,𝑗′,𝑘′,𝑙′  ) ∀𝑖∈𝑁,𝑖<|𝑛|,𝑖′>𝑖,𝑙∈𝑇𝑖,𝑙′∈𝑇𝑖
′,𝑗∈𝑁𝑂𝑖,𝑙,

𝑗′∈𝑁𝑂𝑖′,𝑙′,𝑘∈𝑅𝑖,𝑙,𝑗∩𝑅𝑖′,𝑙′,𝑗′

 (7) 

𝐶𝑚𝑎𝑥 ≥ 𝐶𝑖,𝑗 ∀𝑖∈𝑁,𝑙∈𝑇𝑖,𝑗∈𝑁𝑂𝑖,𝑙
 (8) 

𝐶𝑖,𝑗 ≥ 0 ∀𝑖∈𝑁,𝑙∈𝑇𝑖,𝑗∈𝑁𝑂𝑖,𝑙
 (9) 

𝑋𝑖,𝑙 , 𝑍𝑖,𝑗,𝑘,𝑙 , 𝑌𝑖,𝑗,𝑙,𝑖′,𝑗′,𝑙′ ∈ {0,1} ∀𝑖∈𝑁,𝑙∈𝑇𝑖,𝑘,𝑗∈𝑁𝑂𝑖,𝑙
 (10) 

Equation (1) is the objective function that minimizes the makespan. Constraint (2) ensures that 

exactly one process plan is selected for every job. Constraint (3) allocates operations to their 

corresponding machines according to the selected process plan of that job. Constraints (4) and (5) 
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guarantee that two operations of the same job follow a correct sequence by determining completion 

time of operations for each job. Constraints (6) and (7) ensure that the precedence relationship 

between two operations on the same machine. Constraint (8) calculates the makespan and 

Constraints (9) and (10) define the continuous and binary variables, respectively. 

4. Logic-based Benders decomposition algorithms 

In solving optimization problems, one important feature is computational time required for the 

problem at hand. In practice, the computational time is highly affected by the problem size (i.e., 

number of variables and constraints). The standard mathematical programming approaches 

develop a monolithic model simultaneously considering all variables and constraints. As a result, 

they usually become intractable with increased number of variables and constraints. One direction 

to overcome this weakness is to use the concept of “divide-and-conquer” which decomposes a big 

model into smaller sub-models because it is usually faster to solve smaller problems repeatedly 

than solving the big problem at once. Benders decomposition is a solution approach utilizing this 

idea (Benders, 1962). 

It partitions the variables of the big problem into two smaller sets of primary and secondary 

variables, called master-problem (MP) and sub-problem (SP). The algorithm iterates between MP 

and SP until their solutions converge. Since the MP is a relaxation of the original problem, its 

optimal solution at each iteration is a lower bound for the original model (for a minimization 

problem); whereas the solution of the SP, if feasible, is the best upper bound for the MP solution 

(Roshanaei et al., 2017; Mariel and Minner, 2017). The optimality of the (original) big problem is 

obtained if these two bounds converge. At each iteration, if not optimal, the SP solution is passed 

to the MP by optimality and feasibility cuts. The classical Benders decomposition requires the sub-

problem to be a continuous linear program since it uses the concept of linear duality. The logic-

based Benders decomposition algorithm, an extension of Benders, does not require the sub-

problem to be a linear program. Recent successful applications of this algorithm are the inventory-

location problem by Wheatley et al., (2015) and network interdiction models by  Enayaty-Ahangar 

et al. (2018). 

 

4.1. IPPS problem decomposition 

The IPPS problem under consideration includes three decision dimensions:  

 

1- Decision variables for process plan assignment (X) 

2- Decision variables for machine assignment (Z)  

3- Decision variables for scheduling (Y).  

 

The MP includes the first two assignment decisions of X and Z, and the SP contains sequencing 

decision of Y. For a given assignment of the MP, the schedule is determined by the SP. The SP is 

https://www.sciencedirect.com/science/article/pii/S0305048316302936#!
https://www.sciencedirect.com/science/article/pii/S0305048316302936#!
https://www.sciencedirect.com/science/article/pii/S0305048318300422#!
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always feasible, but it may not be optimal. If the SP solution is equal to the master-problem 

solution, then the sub-problem is called optimal. Otherwise, the sub-problem is called suboptimal. 

If the sub-problem is labeled as optimal, then the solution of the MP is optimal. Otherwise, the 

algorithm adds Benders optimality cut to the MP and repeats. In our problem there is no feasibility 

Benders cut since the SP is always feasible. Figure 1 shows the general scheme of Benders 

decomposition algorithm for the IPPS. Next, the implementation of the algorithm for the IPPS is 

discussed in detail. 

 

 
Figure 1. The general scheme of the proposed Benders decomposition algorithm. 

 

 

4.2. Master-problem 

The MP determines two decisions (process plan assignment and machine assignment). Therefore, 

the MP consists of variables X, Z and 𝐶𝑚𝑎𝑥. The MP in its simplest form only includes Constraints 

(2) and (3). It is well-known that the algorithm usually converges faster if it is enhanced by the 

relaxation of the sub-problem. In our case, the relaxation can be any lower bound for the makespan 

of the SP over the solution of the MP.  

The simplest lower bound for shop scheduling problems is that makespan is greater than the 

total processing of each job and total processing time of operations assigned to each machine. Yet, 

it is expected that the algorithm becomes even more efficient with a better lower bound. A tighter 

lower bound for the classical job shop problem is presented by Carlier and Pinson (1989). This 

lower bound is known for one-machine problem since it obtains a lower bound based on release 

and tail times of operations assigned to the machine. The release time of an operation is its earliest 

possible starting time while the tail time is the lowest possible completion of the corresponding 

job after this operation. The adaptation of this lower bound for our problem is as follows. 

 

Proposition 1. 𝐿𝐵 is a lower bound of the optimal makespan for the IPPS model. 

𝐿𝐵 = max
𝑘

{𝐻𝑘} 

where 𝐻𝑘 is the lower bound of the optimal makespan for the one-machine problem: 
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𝐻𝑘 = min
𝑂𝑖,𝑙,𝑗∈𝐺𝑘

{∑ ∑ 𝑝
𝑖,𝑗′,𝑘′,𝑙

𝑘′|𝑂
𝑖,𝑙,𝑗′∈𝐺

𝑘′𝑗′<𝑗

} + ∑ ∑ ∑ 𝑝
𝑖,𝑗,𝑘,𝑙

𝑗∈𝑁𝑂𝑖,𝑙|𝑂𝑖,𝑙,𝑗∈𝐺𝑘𝑙∈𝑇𝑖𝑖∈𝑁

+ min
𝑂𝑖,𝑙,𝑗

{∑ ∑ 𝑝
𝑖,𝑗′,𝑘′,𝑙

𝑘′|𝑂
𝑖,𝑙,𝑗′∈𝐺

𝑘′𝑗′>𝑗

} 

 

Proof. Similar to the one-machine case, we can add the minimum release and tail times among all 

operations of the same machine to the total processing time of operations on the same machine. 

To calculate the release time of operation 𝑂𝑖,𝑙,𝑗, it is required to know the machines to which the 

preceding operations of this operation are assigned. Thus, the release time of each operation 𝑂𝑖,𝑙,𝑗 

is calculated as follows: 

∑ ∑ 𝑝𝑖,𝑗′,𝑘′,𝑙

𝑘′|𝑂𝑖,𝑙,𝑗′∈𝐺𝑘′𝑗′<𝑗

 

Hence, the minimum release time of operations assigned to machine 𝑘 is 

min
𝑂𝑖,𝑙,𝑗∈𝐺𝑘

{∑ ∑ 𝑝
𝑖,𝑗′,𝑘′,𝑙

𝑘′|𝑂
𝑖,𝑙,𝑗′∈𝐺

𝑘′𝑗′<𝑗

} 

The same procedure is used to calculate the tail time of operation 𝑂𝑖,𝑙,𝑗 (this time with successor 

of the operation). Adding the minimum of these two values (release and tails times) for the 

operations of the same machine to the total processing times gives us a lower bound for the 

makespan. ■ 

 

To incorporate this lower bound into the master-problem, the following constraint is used. 

𝐶𝑚𝑎𝑥 ≥ min
𝑂𝑖,𝑙,𝑗

{𝑍𝑖,𝑗,𝑘,𝑙 (∑ ∑ 𝑝𝑖,𝑗′,𝑘′,𝑙𝑍𝑖,𝑗′,𝑘′,𝑙𝑘′∈𝑅𝑖,𝑙,𝑗′𝑗′<𝑗 )} +

∑ ∑ ∑ 𝑝𝑖,𝑗,𝑘,𝑙𝑍𝑖,𝑗,𝑘,𝑙𝑗∈𝑁𝑂𝑖,𝑙|𝑘∈𝑅𝑖,𝑙,𝑗𝑙∈𝑇𝑖𝑖∈𝑁 + min
𝑂𝑖,𝑙,𝑗

{𝑍𝑖,𝑗,𝑘,𝑙 (∑ ∑ 𝑝𝑖,𝑗′,𝑘′,𝑙𝑍𝑖,𝑗′,𝑘,𝑙𝑘′∈𝑅𝑖,𝑙,𝑗′𝑗′>𝑗 )}  

∀𝑘∈𝑀 

In this case, the master-problem ends up with a constraint that is a mixed integer nonlinear 

program. We can linearize this constraint by defining new auxiliary variables. 𝐸𝑘
1 and 𝐸𝑘

2 are two 

continuous variables for each machine 𝑘 that calculate the minimum release and tail times, 

respectively. 𝑄𝑖,𝑗,𝑘,𝑙
1  (𝑄𝑖,𝑗,𝑘,𝑙

2 ) is a binary variable that determines which operation 𝑂𝑖,𝑗,𝑙 generates 

the minimum release (tail) time for machine 𝑘. Using variables 𝑄𝑖,𝑗,𝑘,𝑙
1   and 𝑄𝑖,𝑗,𝑘,𝑙

2  and constraints 

(12)-(15), 𝐸𝑘
1 and 𝐸𝑘

2 take a value equal to the minimum release and tail times of operations 

assigned to machine 𝑘. Constraint (12) selects an operation for each of release and tail times on 

machine 𝑘. Constraint (13) limits the selection to operations assigned to machine 𝑘. Constraints 

(14) and (15) ensures that 𝐸𝑘
1  and 𝐸𝑘

2 are greater than the release and tail times of the selected 

operations. Note that since both 𝐸𝑘
1 and 𝐸𝑘

2 are positively correlated with 𝐶𝑚𝑎𝑥, the model tends to 

minimize them. Thus, Constraint (12) selects the operations with minimum release and tail times to 

minimize 𝐸𝑘
1 and 𝐸𝑘

2. The linear version of the master problem with this tighter lower bound is: 
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(MP) Objective 

𝑚𝑖𝑛   𝐶𝑚𝑎𝑥  

Subject to: 

Constraint sets (2) and (3) 

𝐶𝑚𝑎𝑥 ≥ ∑ ∑ ∑ 𝑝𝑖,𝑗,𝑘,𝑙𝑍𝑖,𝑗,𝑘,𝑙𝑘∈𝑅𝑖,𝑙,𝑗𝑗∈𝑁𝑂𝑖,𝑙𝑙∈𝑇𝑖
  ∀𝑖∈𝑁 (11) 

∑ ∑ ∑ 𝑄𝑖,𝑗,𝑘,𝑙
ℎ

𝑗∈𝑁𝑂𝑖,𝑙|𝑘∈𝑅𝑖,𝑙,𝑗𝑙∈𝑇𝑖𝑖∈𝑁 = 𝑌𝑘  ∀𝑘∈𝑀,ℎ=1,2 (12) 

𝑄𝑖,𝑗,𝑘,𝑙
ℎ ≤ 𝑍𝑖,𝑗,𝑘,𝑙  ∀𝑖∈𝑁,𝑙∈𝑇𝑖,𝑗∈𝑁𝑂𝑖,𝑙,𝑘∈𝑅𝑖,𝑙,𝑗,ℎ=1,2 (13) 

𝐸𝑘
1 ≥ ∑ ∑ 𝑝𝑖,𝑗′,𝑘′,𝑙𝑍𝑖,𝑗′,𝑘′,𝑙𝑘′∈𝑅𝑖,𝑙,𝑗′𝑗′>𝑗 − 𝑀(1 − 𝑄𝑖,𝑗,𝑘,𝑙

1 )  ∀𝑖∈𝑁,𝑙∈𝑇𝑖,𝑗∈𝑁𝑂𝑖,𝑙,𝑘∈𝑅𝑖,𝑙,𝑗
 (14) 

𝐸𝑘
2 ≥ ∑ ∑ 𝑝𝑖,𝑗′,𝑘′,𝑙𝑍𝑖,𝑗′,𝑘,𝑙𝑘′∈𝑅𝑖,𝑙,𝑗′𝑗′<𝑗 − 𝑀(1 − 𝑄𝑖,𝑗,𝑘,𝑙

2 )  ∀𝑖∈𝑁,𝑙∈𝑇𝑖,𝑗∈𝑁𝑂𝑖,𝑙,𝑘∈𝑅𝑖,𝑙,𝑗
 (15) 

𝐶𝑚𝑎𝑥 ≥ 𝐸𝑘
1 + ∑ ∑ ∑ 𝑝𝑖,𝑗,𝑘,𝑙𝑍𝑖,𝑗,𝑘,𝑙𝑗∈𝑁𝑂𝑖,𝑙|𝑘∈𝑅𝑖,𝑙,𝑗𝑙∈𝑇𝑖𝑖∈𝑁 + 𝐸𝑘

2  ∀𝑘∈𝑀 (16) 

𝑍𝑖,𝑗,𝑘,𝑙 ≤ 𝑌𝑘  ∀𝑖∈𝑁,𝑙∈𝑇𝑖,𝑗∈𝑁𝑂𝑖,𝑙,𝑘∈𝑅𝑖,𝑙,𝑗
 (17) 

𝐸𝑘
1, 𝐸𝑘

2 ≥ 0  (18) 

𝑄𝑖,𝑗,𝑘,𝑙
1 , 𝑄𝑖,𝑗,𝑘,𝑙

2 ∈ {0,1}  (19) 

𝑋𝑖,𝑙 , 𝑌𝑘 , 𝑍𝑖,𝑗,𝑘,𝑙 ∈ {0,1}  (19) 

Constraints (11)-(19) are the relaxation of the sequencing decisions to estimate a lower bound 

for the makespan in the SP. Constraint (11) specifies that the makespan is always greater than the 

total processing time of operations assigned to each job. While Constraints (12)-(19) are linearized 

version of the 𝐿𝐵 presented in proposition 1 into the MP. Binary variable 𝑌𝑘 is also defined to 

calculate the minimum release and tail times for the machines to which at least one operation is 

assigned. 

Incorporating this tighter relaxation of the SP into the MP expedites the convergence of the 

algorithm (Table 4 and 5). Yet, since the linearized model requires more binary variables and 

constraints, solving the master-problem at each iteration needs higher computational time. Since 

the MP is not a hard problem to solve, it does not significantly affect overall computational time. 

 

4.3. Sub-problem 

After solving the MP and specifying the assignment, we have a set of values for X and Z variables. 

Now, considering these values as fixed parameters in the IPPS model, the problem is reduced a 

classical job shop. The SP’s model is as follows: 

 

(SP) Objective 

𝑚𝑖𝑛   𝐶𝑚𝑎𝑥  
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Subject to: 

Constraint sets (5) and (9) 

𝐶𝑖,𝑗 ≥ 𝐶𝑖,𝑗−1 + 𝑝𝑖,𝑗,𝑘,𝑙 ∀𝑖∈𝑁,𝑙∈𝑇𝑖,𝑗∈𝑁𝑂𝑖,𝑙|𝑍𝑖,𝑗,𝑘,𝑙
𝑀𝑃 =1,𝑗≥1 (21) 

𝐶𝑖,𝑗 ≥ 𝐶𝑖′,𝑗′ + 𝑝𝑖,𝑗,𝑘,𝑙 − 𝐴(1 − 𝑌𝑖,𝑗,𝑙,𝑖′,𝑗′,𝑙′  ) ∀ 𝑖∈𝑛,𝑖<|𝑛|,𝑖′>𝑖,𝑙∈𝑇𝑖,𝑙′∈𝑇𝑖
′,𝑗∈𝑁𝑂𝑖,𝑙,

𝑗′∈𝑁𝑂
𝑖′,𝑙′ ,𝑘∈𝑅𝑖,𝑙,𝑗∩𝑅

𝑖′,𝑙′,𝑗′|𝑍𝑖,𝑗,𝑘,𝑙
𝑀𝑃 =𝑍

𝑖′,𝑗′,𝑘′,𝑙′
𝑀𝑃  =1

  (22) 

𝐶𝑖′,𝑗′ ≥ 𝐶𝑖,𝑗 + 𝑝𝑖′,𝑗′,𝑘′,𝑙′ − 𝐴. 𝑌𝑖,𝑗,𝑙,𝑖′,𝑗′,𝑙′ ∀ 𝑖∈𝑛,𝑖<|𝑛|,𝑖′>𝑖,𝑙∈𝑇𝑖,𝑙′∈𝑇𝑖
′,𝑗∈𝑁𝑂𝑖,𝑙,

𝑗′∈𝑁𝑂
𝑖′,𝑙′ ,𝑘∈𝑅𝑖,𝑙,𝑗∩𝑅

𝑖′,𝑙′,𝑗′|𝑍𝑖,𝑗,𝑘,𝑙
𝑀𝑃 =𝑍

𝑖′,𝑗′,𝑘′,𝑙′
𝑀𝑃  =1

 (23) 

𝐶𝑚𝑎𝑥 ≥ 𝐶𝑖,𝑗 ∀𝑖,𝑗∈𝑁𝑂𝑖,𝑙|𝑋𝑖,𝑙
𝑀𝑃=1 (24) 

𝑌𝑖,𝑗,𝑙,𝑖′,𝑗′,𝑙′ ∈ {0,1}  (25) 

 

where 𝑍𝑖,𝑗,𝑘,𝑙
𝑀𝑃  and 𝑋𝑖,𝑙

𝑀𝑃 are the values of the corresponding variables in the MP at this iteration. 

Constraint (21) is to meet the precedence relation among operations of each job. Constraints 

(22) and (23) sequence operations assigned to the same machine. Constraint (24) obtains the 

makespan, and Constraint (25) defines the binary variables. 

 

4.4. Optimality and Benders cut 

After solving the SP, the algorithm ends up with either optimality or sub-optimality. When the 

makespan obtained by the MP and the SP are the same, the algorithm obtains optimality and it 

terminates. When the makespan of the SP is greater than that of the MP, the algorithm is sub-

optimal. Hence, a Benders optimality cut is added to the MP and the algorithm repeats. Since the 

SP is feasible for any solution of the MP, there is no need to add any Benders feasibility cut during 

search. The makespan obtained by the MP is a lower bound and the makespan obtained by the SP 

is an upper bound for the original IPPS problem.  

The following Benders optimality cut is developed.  

𝐶𝑚𝑎𝑥 ≥ 𝐶𝑚𝑎𝑥
𝑆𝑃 (1 − ∑ ∑ ∑ ∑ (1 − 𝑍𝑖,𝑗,𝑘,𝑙)

𝑙∈𝑇𝑖|𝑍𝑖,𝑗,𝑘,𝑙
𝑀𝑃 =1𝑘∈𝑅𝑖,𝑙,𝑗𝑗∈𝑁𝑂𝑖,𝑙𝑖∈𝑁

) (26) 

where 𝐶𝑚𝑎𝑥
𝑆𝑃  is the makespan of the SP at the current iteration. The optimal solution of the MP is 

in fact a set of values for variable Z, and this set of values for Z is the optimum for the relaxation 

used to estimate the makespan. When the SP is solved using these values, a feasible makespan for 

the original problem is obtained. The idea of this cut is to limit the makespan of the same solution 

in the MP to the feasible makespan obtained by the SP. 

 

Proposition 2. Inequality (26) is a valid Benders optimality cut. 

 

Proof. A valid Benders optimality cut must hold two properties; the cut should not remove any 

integer solution and the objective of the incumbent solution is bounded by the optimal solution of 

the SP. As clear, Equation (26) does not cut off any integer solution and only limits the makespan 
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of the incumbent solution of the MP (i.e., a solution with the same set of assignments) to the 

optimal makespan of its associated SP. ■ 

 

4.5. Further improvements  

After our initial experiments and careful analysis of the results, it turns out that the proposed 

algorithm is slow. Two main reasons for this slow convergence are the long computational time 

required to solve the SP and the weak optimality cut.  

One weak point for the Benders algorithm is that it becomes slow when the SP is hard to solve. 

In our problem, the SP is itself a hard problem to solve. To speed up the SP, we can heuristically 

solve the SP and obtain a near-optimal solution. Different heuristics and approaches are tested. We 

find that solving the SP with branch and bound in a commercial optimization software (CPLEX) 

with the following stopping criterion works the best, a computational time of 5 seconds or an 

optimality gap of 5%, whichever comes first. After analyzing the convergence pattern of the SP, 

we realize that our heuristic approach obtains a good upper bound (optimal or near optimal 

solution) for the SP only after few seconds, and it requires a significant amount of time to increase 

the lower bound and to guarantee the optimality. That is, the upper bound of the SP converges 

after a short computational time while its lower bound convergences at a slower rate. Figure 2 

shows a typical SP convergence over time in the proposed algorithm. Therefore, the stopping 

criterion is set to a fixed computational time and a fixed optimality gap (whichever comes first). 

 

 

 
Figure 2. The convergence pattern of the sub-problem (upper and lower bounds) 

 

In this case, the proposed algorithm converges faster, although heuristically. Note that in this 

case, the algorithm may stop before optimality. The upper bound is valid because the SP solution 

is feasible; yet, the lower bound may not be proper since the cuts added to MP are not valid. 

The optimality cut is essential in convergence of the algorithm. Unfortunately, the above-

mentioned Benders cut (26) does not perform well in practice since the cut only affects a small 

number of solutions in the MP and limits the makespan of only those solutions to 𝐶𝑚𝑎𝑥
𝑆𝑃 . The cut 

can perform better if each Benders cut, instead of excluding few solutions, affect many solutions 
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(i.e., none of which can be better than the solutions already obtained). In the proposed Benders cut 

(26), all operations with Z value of 1 in the MP are considered. Thus, this cut can be strengthened 

by identifying a smaller set of operations that result in the same makespan. One way to do this end 

is to track which operations play a role in the determining makespan.  

In scheduling, it is well-known that makespan is not improved as long as the operations in the 

critical path remain untouched. In other words, the makespan of any other schedule keeping the 

same critical path would not have lower the makespan. We implement the idea of the critical path 

into the cut to reduce the number of operations used in the cut. Note that the critical path concept 

holds only when both the assignment and the sequence of operations in the path are kept. In our 

problem, the MP only includes the assignment decisions. Therefore, the defined cut only holds the 

assignment while we may find a schedule with a lower makespan for the same assignment. Hence, 

the critical path-based cut is not a valid cut and the algorithm using this idea theoretically does not 

guarantee the optimality. In fact, this cut may remove an optimal solution. 

Let us describe the idea of critical path with a numerical example with 5 jobs and 5 machines. 

Suppose that the schedule obtained by the SP is the one shown by Figure 3. This schedule has 17 

operations. As a result, the basic no-good cut includes all these 17 operations. In this example, 

there are 3 different critical paths. We show 𝑂𝑎𝑏 as the bth operation of job a. 

Path 1) 𝑂31 → 𝑂32 → 𝑂12 → 𝑂13 → 𝑂14 

Path 2) 𝑂11 → 𝑂32 → 𝑂12 → 𝑂13 → 𝑂14 

Path 3) 𝑂41 → 𝑂21 → 𝑂22 → 𝑂34 → 𝑂44 

 

For this example, 3 Benders cuts are added to the MP, one cut for each critical path. Therefore, 

instead of one cut with 17 operations, three cuts are defined where each cut has as many operations 

as it has. 

 
 

 
Figure 3. The schedule with three critical paths. 

5. Experimental evaluation 

This section evaluates the performance of the proposed algorithm and improvements against the 

IPPS model (MIP) and available algorithms from the literature of the IPPS problem. The model 



15 

 

and algorithm are coded in C++ and IBM ILOG CPLEX 12.6.3 using Concert technology. All the 

experiments are run on a computer with core™ i7-5500U CPU @ 2.40 GHz Intel processor and 

8.0 GBRAM. The time limit was set to the maximum 3600 seconds. An experimental study across 

available benchmark sets is conducted. 

We test two different versions of the proposed algorithm, exact and enhanced Benders 

decomposition algorithms. In the exact one (EBD), both the MP and the SP are optimally solved 

(optimality gap of zero) and the Benders’ optimality cut (26) is used. In the heuristic one (HBD) 

the MP is optimally solved, yet the SP is solved for at most 5 seconds or 5% optimality gap 

(whichever comes first). In HBD, the critical path-based optimality cut is used. In the literature of 

the IPPS problem, there are different benchmark sets as reviewed earlier (in Table 1). There are 

10 available benchmark sets for the type-1 IPPS consisting of total of 16 instances. The 

performance of the proposed solution method is compared with all the 16 available algorithms 

given in Table 2. Note that, as discussed before, we cannot solve type-2 IPPS benchmark sets since 

this model is designed for the type-1 IPPS, and type-1 and type-2 problems are quite different from 

each other in terms of mathematical modelling. 

Benchmark sets B1-B7 include small instances that are optimally solved by EBD, HBD and 

some of the available algorithms in a very short computational time (commonly less than one 

second). Their results are presented in Appendix 1. Table 4 shows the results obtained from all the 

algorithms over benchmark sets B8, B9, and B11 where none of instances in these benchmark sets 

are optimally solved by the available algorithms. For the instance in benchmark set B8, the best-

known solution is 28 found by SA (Mohammadi et al., 2012). Our algorithm solved this benchmark 

instance optimally and the optimal solution is 27 (Appendix 2). Among the six instances of 

benchmark set B9, HBD improves the best-known solutions for all the six instances. Both EBD 

and HBD solve four instances (1, 2, 5, and 6) to optimality. The best-known solutions for the first 

and second instances are 507 and 586, respectively; while the optimal solutions are 492 and 582. 

The best-known solutions for the fifth and sixth instances are 888 and 954, respectively; while the 

optimal solutions are 874 and 944. For the other two instances, the optimality is not proven, the 

best-known solutions are improved from 670 to 665 for the third instance, and from 787 to 774 for 

the fourth instance. Appendix 3 presents the solutions obtained by HBD for the six instances in 

B9. As of benchmark set B11 with a large instance of 100 jobs and 10 machines, the best-known 

solution is 165 by AB (Li et al., 2010a). HBD decreases the best-known solution to 161 even for 

this large instance. Appendix 3 presents the Gantt chart of the schedule with makespan of 161. For 

this large instance, the optimality gap of the MP is set to 1% and the parameter MIPemphasis in 

CPLEX to one, and the SP stopping criterion to 1000 seconds. 

Algorithms from the literature were coded with different programming languages and ran on 

different computers over different time frames; therefore, their computational times are not 

comparable. For example, Lian et al. (2012) code their algorithm with C++ and run on a computer 

with 2.0 GHz Intel Core2 Duo CPU. Mohammadi et al. (2012) code with MATLAB and use a 

computer with 2.20GHz dual-core processor and 2 GB RAM.  
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HBD solves all the benchmark instances within a reasonable computational time. It optimally 

solves the instances of benchmark sets B1, B2, B3, B5, B6, and B7 in less than one second, 

benchmark sets B4 and B8 in less than 25 seconds, benchmark set B9 in less than 150 seconds on 

average, and benchmark set B11 in less than 3450 seconds. Benchmark set B9 is discussed later 

in this section.  

In brief, HBD either results in the optimal solution or improves the best-know solution for all 

the 16 available benchmark instances. In 13 instances, HBD approves and obtains the optimal 

solution. Among these 13 instances, five instances are solved to optimality for the first time. In the 

three other instances, it improves the best-known solutions. Therefore, HBD provides the state-of-

the-art results for the type-1 IPPS problem. 

 

Table 4. The results (makespan) of all the tested algorithms  

Benchmark n m Algorithms 

B8 
  MIP EBD HBD IGA PSO SA GA2 

10 10 27 27 27*^ 30 29 28 29 

B9 

  MIP EBD HBD EA ICA HBMO  

8 4 520 492 492*^ 520 499 507  

10 4 603 582 582*^ 621 586 596  

12 4 701 694 665^ 724 679 670  

14 4 854 785 774^ 809 803 787  

16 4 950 874 874*^ 921 900 888  

18 4 1013 944 944*^ 994 976 954  

B11 
  MIP EBD HBD ICA AB SGA GADG 

100 10 318 184 161^ 169 165 267 229 

*Optimal solution 

^ The state of the art solution 

 

To further evaluate the proposed improvements over the algorithm, four different versions are 

tested, HBDs 1-4. HBD1 and HBD2 use Benders’ optimality cut (26) and HBD3 and HBD4 use 

the derived critical path-based cut. HBD1 and HBD3 use simple relaxation of SP (i.e., excluding 

the tight relaxation in (12)-(18) form the MP). All four HBDs may terminate solving the SP before 

optimality. We solve the six instances of benchmark set B9 by Jain et al. (2006) and report 

makespan, optimality gap, and computational times. The optimality gap is calculated with the 

following formula. 

𝐺𝑎𝑝 =  
𝑈𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 − 𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑

𝑈𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑
× 100 
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Note that as of the lower bound for HBDs, the makespan of the first iteration is used. Since no cut 

is added to the MP yet, the makespan of the MP at the first iteration is still a valid lower bound for 

the makespan.  

Table 5 show the results of three different versions of the proposed algorithm. From Table 5, 

incorporating the stronger relaxation significantly improves the performance since HBD2 and 

HBD4 are faster than HBD1 and HBD3. The difference between HBDs and EBDs becomes clear 

when the SP is hard, i.e., the idea of non-optimal solution effectively works. In terms of cut’s 

effectiveness, HBD4 is slightly better than HBD2 and this shows that in these instances, the critical 

path-based optimality cut partially improves the performance. However, we observe that the 

critical path-based cut can be much more effective, for example, in the instance by Dong and Sun 

(2007). HBD2 requires 430 iterations to solve this instance while HBD4 needs only 42 iterations. 

 

Table 5. The results by four HBDs. 

Ins. 
HBD1 HBD2 HBD3 HBD4 

𝐶𝑚𝑎𝑥 
Gap 

(%) 

Time 

(sec) 
𝐶𝑚𝑎𝑥 

Gap 

(%) 

Time 

(sec) 
𝐶𝑚𝑎𝑥 

Gap 

(%) 

Time 

(sec) 
𝐶𝑚𝑎𝑥 

Gap 

(%) 

Time 

(sec) 

1 492 3.3 263 492 2.0 101 492 2.6 205 492 2.0 122 

2 582 2.6 2815 582 2.2 567 582 2.6 2888 582 2.2 564 

3 665 1.8 1294 665 0.6 98 665 1.8 1266 665 0.6 164 

4 774 0.8 491 774 0.1 19 774 0.8 468 774 0.1 19 

5 874 0.0 5 874 0.0 5 874 0.0 5 874 0.0 5 

6 944 0.0 10 944 0.0 10 944 0.0 10 944 0.0 10 

 

Next, the convergence behavior of the proposed algorithm is examined. We solve the six 

instances of benchmark set B9 with MIP, EBD, and HBD4 with 80 and 3600 seconds of the 

computational time. Table 6 provides the results. It is observed that HBD4 is fast to solve the IPPS 

problem compared to MIP and EBD. It obtains an average optimality gap of less than 2.1% in 80 

seconds. EBD is also effective with the average optimality gap of 3.5%, while MIP yields the 

average gap of 58%. All these results strongly support the high performance of the proposed 

algorithm. They outperform all the existing algorithms and can obtain small optimality gap in a 

reasonable short computational time. 

 

Table 6. The results of MIP, EBD, and HBD4 in two different computational times. 

Ins. 

80 seconds  3600 seconds 

MIP  EBD HBD4  MIP  EBD HBD4 

𝐶𝑚𝑎𝑥 Gap 𝐶𝑚𝑎𝑥 Gap 𝐶𝑚𝑎𝑥 Gap  𝐶𝑚𝑎𝑥 Gap 𝐶𝑚𝑎𝑥 Gap 𝐶𝑚𝑎𝑥 Gap 

1 520 34% 492 1% 492 2%  504 32% 492 0% 492 2% 

2 680 50% 637 10% 592 4%  603 43% 592 3% 582 2% 

3 821 58% 696 6% 681 4%  701 51% 696 6% 665 1% 

4 1006 66% 806 4% 793 3%  854 60% 806 5% 774 1% 

5 1082 68% 874 0% 874 0%  950 64% 874 0% 874 0% 

6 1265 73% 944 0% 944 0%  1013 66% 944 0% 944 0% 
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6. Conclusion and future research 

This paper studies the integrated process planning and scheduling problem. Although there are 

several papers in the literature, they all solve the problem with algorithms based on heuristics and 

metaheuristics over different benchmark sets. We use 16 different algorithms and 10 benchmark 

sets from the literature and provide a comprehensive performance comparison of the proposed 

method with existing ones. An enhanced logic-based Benders decomposition algorithm is 

proposed. We first develop an exact algorithm where the master-problem involves two decisions 

of process plan selection and operation to machine assignment, and the sub-problem is a pure 

scheduling problem. Two strong sub-problem relaxations are incorporated into the master-problem 

for faster convergence. Since the sub-problem is always feasible, the algorithm only requires the 

Benders optimality cut.  

After a careful analysis of the results obtained, it turns out that the algorithm is still slow due 

to the long computational time for the sub-problem and the weak optimality cut. Considering the 

convergence pattern of the sub-problem, we give limited computational time to solve the sub-

problem to speed up the algorithm. Moreover, to have a more effective cut, we use the concept of 

critical path and operations on the same critical path produce a separate cut. We comprehensively 

test the performance of our proposed algorithm on 10 different available benchmark sets (including 

a total of 16 instances) against 16 existing algorithms. The proposed algorithm is effective to solve 

the IPPS problem by resulting in the optimal solution or improving the best-known solution from 

the literature. The proposed algorithm finds the optimal solution in most cases (13 out of 16 

instances). We present all the solutions for the improved benchmark instances in the appendices. 

Productivity (i.e., resource utilization) and makespan minimization in scheduling are highly 

correlated (Pinedo 2008; Deidel and Arndt 1998). Regarding cost-intensive resources in 

manufacturing systems, every single idle time unit of resources means the capital waste. Removing 

unnecessary idle time results in a lot of saving for manufacturers. A lower makespan implies good 

resource utilization (i.e., the same production with less resource). Therefore, what this paper 

contributes to the production management in a broader sense is an effective planning tool that 

improves the productivity of production resource. For example, for the benchmark instance by Jin 

et al. (2006), our method improves the makespan over the average results in the literature by 3.3% 

which means 2% improvement over the-state-of-art result in productivity with zero-dollar cost.  

This paper studies the IPPS problem with a given number of process plans, which is called 

type-1 IPPS. This problem is not compatible with a network graph-based instances. In fact, in this 

type, we must pre-count all the possible process plans from the network graph of jobs in advance. 

It is known that the type-1 IPPS is not effective when the number of process plans rises. One 

interesting future research is to extend the results to the type-2 IPPS where the algorithms and 

models must deal with the network graph. Another useful future research is to develop better 

solution methods for the SP. The SP is in fact a reentrant job shop problem where a job may visit 

a machine multiple times, each time for one of its operations. In this study, branch and bound 

method of commercial software CPLEX is used to solve the sub-problem. This is effective and 

fast for medium or large-sized instances. However, for very large instances like benchmark set 
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B11 with 100 jobs, the branch and bound becomes slow. It may be possible to adapt an algorithm 

from the job shop scheduling to speed up the SP.  

An interesting future research direction is to use constraint programming (CP) technique to 

solve the subproblem since it has been reported in the literature that CP models work well to solve 

pure scheduling problems like the subproblem (Bukchin, and Raviv, 2018). Another idea is to 

consider model-based metaheuristic algorithms which combine metaheuristics and mathematical 

programming techniques (Leggieri and Haouari, 2018; Hernández-Leandro et al., 2018). The 

algorithm designed in this paper is only applicable to the type-1 IPPS problem since the problem 

specifications of type-1 and type-2 are significantly different. One study can extend the proposed 

algorithm to the type-2 IPPS problem. 

 

 

Appendixes 

Appendix 1. Table 7 shows the makespan obtained by algorithms over benchmark sets B1-B7. 

 

Table 7. The results (makespan) obtained by the algorithms over benchmarks B1-B7. 

Benchmark n m Algorithms 

B1 
  MIP EBD HBD ICA EA SBGA   

4 6 17 17 17* 17 17 17   

B2 
  MIP EBD HBD GA EA PBH ICA HBMO SBGA 

5 3 33 33 33* 33 33 33 33 33 33 

B3 
  MIP EBD HBD GA PBH ACO AB GADG  

5 3 350 350 350* 360 350 380 350 360  

B4 
  MIP EBD HBD HGA GA ICA ESA  

5 5 14 14 14* 14 14 14 16  

B5 
  MIP EBD HBD HGA EA ICA HBMO  

6 5 27 27 27* 27 27 27 -  

 6 5 90 90 90* - 92 90 90  

B6 
  MIP EBD HBD ICA     

8 5 24 24 24* 24     

B7 
  MIP EBD HBD HGA   GA1 SBGA   

8 6 23 23 23 23 34 23   

*Optimal solution 

 

 

https://en.wikipedia.org/wiki/Metaheuristics
https://en.wikipedia.org/wiki/Mathematical_programming
https://en.wikipedia.org/wiki/Mathematical_programming
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Appendix 2. The optimal solution for instance by Dong and Sun (2007) is presented in Figure 4. 

 
Figure 4. The optimal schedule of the instance with 10 jobs in by Dong and Sun (2007). 

 

 

 

 

 

 

Appendix 3. The solutions for the six instances by Jain et al. (2006) are presented in Figures 5-10. 

 
Figure 5. The optimal schedule of Instance 1 with 8 jobs by Jain et al. (2006). 

 

 



21 

 

 
Figure 6. The optimal schedule of Instance 2 with 10 jobs by Jain et al. (2006). 

 

 

 
Figure 7. The schedule of Instance 3 with 12 jobs by Jain et al. (2006). 

 

 

 
Figure 8. The schedule of Instance 4 with 14 jobs by Jain et al. (2006). 
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Figure 9. The optimal schedule of Instance 5 with 16 jobs by Jain et al. (2006). 

 

 

 

 

 

 

 
Figure 10. The optimal schedule of Instance 6 with 18 jobs by Jain et al. (2006). 
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Appendix 4. The solution for the instance by Chan et al. (2008) is presented in Figure 11. 

 
Figure 11. The optimal schedule of the instance with 8 jobs by Chan et al. (2008). 
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