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1. Introduction and motivation. Our research concerns appointment scheduling of jobs on a highly utilized
processor when the processing durations are stochastic, and jobs are not available before their appointment dates.1

We came across this problem in surgery scheduling and in appointment scheduling of oncologist consultations
and radiation therapy treatments for cancer patients. There are many other challenging and important real-life
applications for this setting including healthcare diagnostic operations (such as CAT scans, MRIs) and physician
appointments, as well as project scheduling, container vessel and terminal operations, gate and runway scheduling
of aircrafts in an airport. For example, in surgery scheduling, patients or surgeries are the jobs, the operating
room (OR) and associated resources are the processor, and the surgeon or the hospital is the scheduler. Figure 1
shows an example of surgery durations (OR time in minutes) per surgical specialty. This data was obtained
during an applied research project (Santibanez et al. [32]). As seen from the box plots of Figure 1 and as
reported in other studies (e.g., Begen et al. [5], Strum et al. [34]) surgery durations show variability.

Some appointment scheduling applications may have a specific due date for the end of processing, e.g.,
end-of-day for an OR, after which additional cost per time unit, e.g., overtime, is incurred. The need for a
good schedule is crucial, and savings from such a schedule can be significant. In most cases, an appointment
schedule needs to be prepared before any processing starts. It assigns each procedure an allocated duration by
specifying the appointment date at which the required personnel and equipment, and the job or patient will be
available. However, due to the uncertain processing durations, some jobs may finish earlier, whereas some others
may finish later, than the appointment date of the next job. As the appointment dates have to be determined in
advance, there are only limited recourse options when the actual duration of a job differs from its planned value.
When a procedure finishes earlier than the next procedure’s appointment date, the processor and other resources
remain idle until the appointment date of the next job. This results in resource under-utilization. On the other
hand, if a job finishes later than the next job’s appointment date, the next job has to wait for the preceding
procedure to complete and will start later than its original appointment date. This results in waiting for the next
job and may cause overtime for the processor and resources at the end of the schedule. Therefore, there is an
important tradeoff between underutilization, overtime, and job waiting times. We are interested in generating
an appointment vector2 that minimizes the expected total cost of resource under-utilization, overtime, and job
waiting times. Finding such a schedule is more challenging but more valuable and useful when processing
durations have more variability. Figure 2 shows an instance with three jobs G1B1R to be processed in this
order. An appointment schedule (AG1AB1AR) is given. Once the processing starts, due to the random processing
durations, some jobs may be early whereas some others may be late as shown in Figure 2.

1 To conform with scheduling terminology, we use the term “date” to denote a point in time. In most applications of appointment scheduling,
the appointment “dates” are actually appointment times within the day for which the jobs are being scheduled.
2 We use appointment schedule and appointment vector interchangeably.
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Figure 1. Surgery durations.

This problem can be modeled as a multistage stochastic program, but there are significant computational
difficulties due to the need for multidimensional numerical integration (see §2). To the best of our knowledge,
all the analytical studies we are aware of, even the ones with discrete epochs for job arrivals, use continuous
processing duration distributions. For a given sequence of jobs, only small instances can be solved to optimality;
larger instances require heuristics.

We study a discrete time version of the appointment scheduling problem and establish discrete convexity
properties of the objective function. Discrete convex analysis has been advocated by Murota [22] and for
recent developments in the topic see Murota [24]. We prove that the objective function is L-convex under mild
assumptions on cost coefficients. L-convex functions, introduced by Murota [21], play a central role in discrete
convexity and our research. Furthermore, we show that there exists an optimal integer appointment schedule
minimizing expected total costs. This result is important as it allows us to optimize only over integer appointment
schedules without loss of optimality. All these results on the objective function and optimal appointment schedule
enable us to develop a polynomial time algorithm, based on discrete convexity (Murota [23]), that, for a given
processing sequence, finds an appointment schedule minimizing the total expected cost. This algorithm invokes
a sequence of submodular set function minimizations, for which various algorithms are available; see e.g.,
Fujishige [13], Iwata [17], Fleischer [12], McCormick [20], and Orlin [25].

When processing durations are stochastically independent, we evaluate the expected cost for a given processing
order and an integer appointment schedule efficiently in polynomial time. Independent processing durations lead
to faster algorithms.

An appointment schedule: AG, AB, AR

A realization of durations and the completion times

ARAG AB

G B R

G B R

I W O

I: Idle time

W: Wait time

O: Over time

AG CG CB CR

Figure 2. A three-job instance and a realization of the processing durations.
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Our modeling framework can include a given due date for the end of processing (e.g., end of day for an
operating room) after which overtime is incurred, instead of letting the model choose an end date. We also
extend our analysis to include no-shows and some emergency jobs. The expected benefits of this research effort
include reduced job-waiting times, reduced overtime, and improved capacity utilization.

Our paper is organized as follows. We start with a literature summary in §2. Section 3 states our assumptions,
introduces our notation, and formally defines the problem and objective function. Section 4 gives some basic
properties of the objective function and optimal solutions. In §5 we show the existence of an optimal appointment
vector which is integer. Section 6 establishes the submodularity and L-convexity of the objective function under
a mild condition on cost coefficients. We show that the total expected cost can be minimized efficiently and give
the complexity of this minimization in §7. In that section, we also compute the objective function for any integer
appointment vector and determine its complexity when the processing durations are stochastically independent.
This independence assumption leads to faster algorithms. We extend our analysis for an objective function with
a due date for the end of processing in §8. Section 9 shows how to handle no-shows and some emergency jobs
within our framework. Section 10 discusses the current work and future work, and it concludes the paper.

2. Related literature. There are many studies in the last 50 years about appointment scheduling, especially
in healthcare. Here, we present the ones that we believe are the most relevant to our research. The use of appoint-
ment systems is not limited to service industries but also extends to other areas, such as project management,
production, and transportation.

Sabria and Daganzo [31] consider scheduling of arrivals of container vessels at a seaport. Weiss [38] recog-
nized that the appointment scheduling problem has a closed form solution when there is only a single job, and it
coincides with the well-known newsvendor solution from inventory theory. However, the appointment scheduling
problem departs from newsvendor characteristics and solution methods in the case of multiple jobs (Robinson
et al. [30], Begen and Queyranne [3]). Zipkin [39] presents an analysis on the structure of a single-item mul-
tiperiod inventory system, closely related to the newsvendor problem, by using discrete convexity. Elhafsi [11]
studies a production system of multiple stages with stochastic leadtimes. The objective is to determine planned
leadtimes such that the expected total cost (inventory, tardiness, and earliness) is minimized. Bendavid and
Golany [6] consider project scheduling with stochastic activity durations. They address the problem of determin-
ing for each activity a gate, i.e., a time before which the activity cannot begin, so as to minimize total expected
holding and shortage costs, for which they use a heuristic based on the cross entropy methodology. Cayirli
and Veral [9] review the literature on appointment systems of outpatient scheduling. The authors classify the
literature in terms of methodologies and modeling aspects considered, and provide a discussion of performance
measures. The authors conclude that the existing literature provides very situation-specific solutions and does not
offer generally applicable and portable methodologies for appointment systems design in outpatient scheduling.
Another literature review by Cardoen et al. [8] on operating room scheduling evaluates the papers on either the
problem setting, such as performance measures, or technical properties such as solution methods.

In a queuing-based study, Wang [36] develops a model to find appointment dates of jobs in a single-server
system to minimize expected customer delay and server completion time with identical jobs, identical costs, and
exponentially distributed processing durations. In his numerical studies, the optimal allocated time for each job
shows a “dome” structure; i.e., it increases first and then decreases. In another study, Wang [37] investigates
the sequencing problem with the same setting but with distinct exponential distributions. He conjectures that
sequencing with increasing variance is optimal. Bosch et al. [7] present a model with i.i.d. Erlang processing
durations and identical cost coefficients. In their model, customers can arrive only at one of discrete potential
arrival epochs, which are equally spaced, and the decision variable is the number of customers to be scheduled at
each potential arrival epoch. In a related paper, Kaandorp and Koole [18] study outpatient appointment scheduling
with exponential processing durations and no-shows. They take advantage of the exponential distribution in their
computations and define a neighborhood structure and an exact search method. However, for large instances,
they develop a heuristic due to high computation times of their search method.

Another important stream of appointment scheduling research is based on stochastic programming. Denton
and Gupta [10] develop a two-stage stochastic linear program to determine optimal appointment dates for a
given surgery sequence and due date for the end-of-processing horizon. The authors use general, i.i.d., and con-
tinuous processing durations, and identical server idling cost coefficients for all jobs. They infer from stochastic
programming results that their model is a convex minimization problem, and they develop an algorithm with
sequential bounding for solving small-sized instances. They develop heuristics to solve larger instances. In a
related study, Robinson and Chen [29] develop a stochastic linear program for finding appointment dates for a
fixed sequence of surgeries and propose a Monte Carlo-based solution method. Due to the high computational
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requirements of Monte Carlo integration, they develop heuristics in which they use the “dome” structure of the
optimal policy as reported in Wang [36].

Appointment scheduling can be thought of as an operational level of capacity planning problem since it is
concerned with scheduling of jobs (patients) available on the day of processing (service) (Santibanez et al. [32],
Patrick et al. [26], Schutz and Kolisch [33]). Researchers also study the problem of scheduling patients in
advance of the service date. In this stream of research see, e.g., Patrick et al. [26], Schutz and Kolisch [33],
Green et al. [14], Gupta and Wang [15], and the references therein, arrivals are random but processing durations
are deterministic and the main decision is how to allocate available capacity to incoming demand. Different
objectives are considered such as revenue maximization (Gupta and Wang [15]) or cost minimization to achieve
target waiting times (Patrick et al. [26]). Luzon et al. [19] use a fluid approximation to minimize average
waiting time.

Finally, we would like to point out the similarities between appointment scheduling and single machine
scheduling; see e.g., Pinedo [28] for machine scheduling. Unlike machine scheduling, in appointment scheduling
a sequence is given and the release dates are the decision variables. Furthermore, the objective function of the
appointment scheduling problem is quite different than the objective functions of classical machine scheduling
problems. Processing durations are usually deterministic in machine scheduling problems but random processing
durations are also studied in literature; see, e.g., Pinedo [27, 28].

In this paper we develop a framework for solving appointment scheduling problems with discrete duration
distributions. The framework neither requires identical and independently distributed durations nor identical cost
coefficients. (We do require a mild condition on cost coefficients.) Finally the framework can handle no-shows
and some types of emergencies. We believe the framework is portable and applicable to many appointment
systems in healthcare and other areas.

3. Assumptions and notation. There are n+ 1 jobs that need to be sequentially processed on a single pro-
cessor. The processing sequence is given. An appointment schedule needs to be prepared before any processing
can start and jobs will not be available before their appointment dates. When a job finishes earlier than the
next job’s appointment date, the system experiences some cost due to under-utilization. We refer to this cost as
the underage cost. On the other hand, if a job finishes later than the next job’s appointment date, the system
experiences overage cost due to the overtime of the current job and the waiting of the next job.

The processing durations are given by their joint discrete distribution. In §7, we will show that assuming
independent discrete processing durations lead to faster algorithms. We assume that this joint distribution is
known. Complete information of distributions is reasonable in most settings, but we relax this assumption
in Begen et al. [4]. Our next assumption is a natural one: all cost coefficients and processing durations are
nonnegative and bounded. A key assumption in this work is that processing durations are integer-valued.3

Although we obtain some of our results without this assumption, it is important for our main results.
We assume job 1 starts on time; i.e., the start time for the first job is zero, and there are n real jobs. The

4n+ 15st job is a dummy job with a processing duration of 0. The appointment time for the 4n+ 15st job is
the total time available for the n real jobs. We use the dummy job to compute the overage or underage cost of
the nth job.

Let 8112131 : : : 1 n1n+ 19 denote the set of jobs. We denote the random processing duration of job i by pi

and the random vector4 of processing durations by p = 4p11 p21 : : : 1 pn105. Let
¯
pi and p̄i denote the minimum

and maximum possible value of processing duration pi, respectively. The maximum of these p̄is is p̄max =

max4p̄11 : : : 1 p̄n5. The underage cost rate ui of job i is the unit cost (per time unit) incurred when job i is
completed at a date Ci before the appointment date Ai+1 of the next job i+ 1. The overage cost rate oi of job i
is the unit cost incurred when job i is completed at a date Ci after the appointment date Ai+1. Thus the total cost
due to job i completing at date Ci is ui4Ai+1 −Ci5

+ + oi4Ci −Ai+15
+ where 4x5+ = max401 x5 is the positive

part of real number x. We define u= 4u11 u21 : : : 1 un5 and o= 4o11 o21 : : : 1 on5. We denote unit vectors in �n+1

as 1i where the ith component is 1 and all other components are 0.
The underage cost may be interpreted as the idling cost and/or opportunity cost of the resources, whereas the

overage cost may be thought of as the waiting cost of the next job and/or the overtime of the current job. The
overage cost of the last job may include the overtime cost for the whole facility at the end of the schedule after
a specified due date.

3 We can restrict ourselves to integer appointment schedules without loss of optimality by Theorem 5.1.
4 We write all vectors as row vectors.
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Next we introduce our decision variables. Let ai be the allocated duration and let Ai be the appointment date
for job i. Then we have A1 = 0 and Ai+1 =Ai +ai for i = 11 : : : 1 n. Thus we may equivalently use the allocated
duration vector a = 4a11 a21 : : : 1 an−11 an5 or the appointment vector A= 4A11A21 : : : 1An1An+15 (with A1 = 0)
as our decision variables; we choose to work with the appointment vector A. We introduce additional variables
that help define and compute the objective function. Let Si be the start date and let Ci be the completion date
of job i. Since job 1 starts on time, we have S1 = 0 and C1 = p1. The other start times and completion times are
determined as follows: Si = max8Ai1Ci−19 and Ci = Si + pi for 2 ≤ i ≤ n+ 1. Note that the dates Si and Ci are
random variables that depend on the appointment vector A.

Let F 4A � p5 be the total cost of appointment vector A given processing duration vector p:

F 4A � p5=

n
∑

i=1

(

oi4Ci −Ai+15
+

+ ui4Ai+1 −Ci5
+
)

0 (1)

The objective to be minimized is the expected total cost F 4A5 = Ep6F 4A � p57, where the expectation is
taken with respect to random processing duration vector p. We simplify notations by defining the lateness
Li =Ci −Ai+1 of job i, its tardiness Ti = 4Li5

+, and its earliness Ei = 4−Li5
+. The objective F 4A5 can now be

written as

F 4A5= Ep

[ n
∑

i=1

4oiTi + uiEi5

]

=

n
∑

i=1

4oiEpTi + uiEpEi50

4. Basic properties. We start by making an observation about the completion times and expressing the
objective function in a different form that is useful for deriving some of our later results. Since Ci = Si + pi =

max8Ai1Ci−19+pi, the completion time of job i may be seen as the length of the longest (or critical) path from
some job j (j ≤ i) to job i+ 1 in a corresponding “project network” (Pinedo [28]), namely:

Lemma 4.1 (Critical Path). For all jobs i = 11 : : : 1 n,

Ci = max
j≤i

{

Aj +

i
∑

k=j

pk

}

1

F 4A � p5=

n
∑

i=1

(

oi

(

max
j≤i

{

Aj +

i
∑

k=j

pk

}

−Ai+1

)+

+ ui

(

Ai+1 − max
j≤i

{

Aj +

i
∑

k=j

pk

})+)

0

Proof. The claim holds trivially for i = 1. By induction let the claim be true for i =m; i.e., Cm =

maxj≤m8Aj +
∑m

k=j pk9. Then

Cm+1 = Sm+1 +pm+1 = max8Am+11 Cm9+pm+1 by definition

= max
{

Am+11 max
j≤m

{

Aj +

m
∑

k=j

pk

}}

+pm+1 by inductive assumption

= max
{

Am+1 +pm+11 max
j≤m

{

Aj +

m+1
∑

k=j

pk

}}

= max
j≤m+1

{

Aj +

m+1
∑

k=j

pk

}

0

The expression for F 4A � p5 follows. �
The next result is not only important on its own but also crucial for the existence of an optimal solution.

Lemma 4.2 (Continuity). Functions F 4· � p5 and F 4 · 5 are continuous.

Proof. By Equation (1), F 4· � p5 is a weighted sum of piecewise linear continuous functions of A, hence
is itself piecewise linear continuous. Since we have a finite sample space, the expectation F 4 · 5= EpF 4· � p5 is
also continuous. �

We next establish the existence of an optimal solution. The proof follows from the fact that our objective
function is continuous (by Lemma 4.2), and we can restrict the appointment vector to a compact set without
loss of optimality. Let

¯
A = 4

¯
A11 : : : 1

¯
An+15 and Ā = 4Ā11 : : : 1 Ān+15, where

¯
A1 = Ā1 = 0,

¯
Ai =

∑

j<i
¯
pj , and

Āi =
∑

j<i p̄j for i = 21 : : : 1 n+1. We define the compact set K as the cartesian product of the intervals 6
¯
Ai1 Āi7;

i.e., K=
∏n+1

i=1 6
¯
Ai1 Āi7= 6

¯
A1 Ā7⊆�n+1.

Lemma 4.3 (Existence of an Optimal Vector). There exists an appointment vector A∗ ∈ K such that
F 4A∗5≤ F 4A5 for any appointment vector A.
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Proof. We show that we can restrict, without loss of optimality, the appointment vector A to the compact
set K= 6

¯
A1 Ā7 and recall that job 1 starts at time zero; i.e., A1 = 0 =

¯
A1 = Ā1. Consider any appointment vector

A 6∈K with A1 = 0.
If A 6≥

¯
A, then define the appointment vector A′ = A ∨

¯
A with component A′

i = max8Ai1
¯
Ai9. For any

realization p of the processing durations, the completion times C ′
i in the resulting schedule satisfy C ′

i =

Ci ≥
¯
Ai+1. (Indeed, C ′

1 = p1 = C1 ≥
¯
A2 and, by induction, C ′

i = max8A′
i1C

′
i−19 + pi = max8Ai1

¯
Ai1Ci−19 +

pi = max8Ai1Ci−19+ pi = Ci ≥
¯
Ai+1.) Then the resulting tardiness and earliness become: if Ai+1 ≥

¯
Ai+1, then

T ′
i = 4C ′

i − A′
i+15

+ = 4Ci − Ai+15
+ = Ti and E ′

i = 4A′
i+1 − C ′

i5
+ = 4Ai+1 − Ci5

+ = Ei; and, if Ai+1 <
¯
Ai+1, then

T ′
i = 4C ′

i −A′
i+15

+ = 4Ci −
¯
Ai+15

+ ≤ 4Ci −Ai+15
+ = Ti and 0 ≤ Ei = 4Ai+1 −Ci5

+ ≤ 4A′
i+1 −C ′

i5
+ = E ′

i = 0 (so
E ′

i =Ei = 0). Since all ui, oi ≥ 0, it follows from Equation (1) that F 4A′ � p5≤ F 4A � p5 and thus, F 4A′5≤ F 4A5.
We have shown that for every A there exists A′ ≥

¯
A with F 4A′5≤ F 4A5.

Now, for any vector A ∈�n+1 satisfying A≥
¯
A, A1 = 0, and A 6∈K, let i4A5 denote the smallest index such

that Ai > Āi. Let A ∈�n+1 be a vector with largest i4A5 value satisfying A≥
¯
A, A1 = 0, and A 6∈K. We claim

that there exists A′ satisfying A′ ≥
¯
A, A′

1 = 0, F 4A′ ≤ F 4A5, and either A′ ∈ K or i4A′5 > i4A5. Then after
at most n such changes we obtain A′′ ∈K satisfying F 4A′′5≤ F 4A5, which is what we wanted to show. We now
prove the claim.

Let i = i4A5, �=Ai − Āi > 0, and define A′ with A′
j =Aj for all j ≤ i− 1, and A′

j =Aj − � for all j ≥ i, so
A′

i = Āi. For every realization p of the processing durations, the completion times C ′
j in the resulting schedule

satisfy C ′
j =Cj for all j ≤ i− 1. Note that for all j ≤ i− 1, Aj ≤ Āj implies Cj ≤ Āj+1. Therefore, Ci =Ai + pi

and C ′
i =A′

i +pi =A′
i +Ci −Ai =Ci −�. It follows that C ′

j =Cj −� for all j ≥ i. As a result, E ′
j =Ej and T ′

j = Tj
for all j 6= i− 1, and E ′

i−1 = Ei−1 − �, T ′
i−1 = Ti−1 = 0. Since � > 0 and ui−1 ≥ 0, F 4A′ � p5≤ F 4A � p5 and thus,

F 4A′5≤ F 4A5. Since A′
j =Aj ≤ Āj for all j ≤ i− 1 and A′

i = Āi, then either A′ ∈K or i4A′5≥ i+ 1 = i4A5+ 1,
establishing the claim. This shows that for any A 6∈K there exists a vector A′′ ∈K with F 4A′′5≤ F 4A5.

As a result, since F is continuous, its minimum on compact set K is attained and is therefore the global
minimum. �

The next lemma gives bounds on the difference between any two consecutive components of an optimal
appointment vector, and from this we obtain a useful and intuitive result in Lemma 4.5.

Lemma 4.4. There exists an optimal appointment schedule A∗ ∈ K satisfying
¯
pi ≤ A∗

i+1 − A∗
i ≤

∑

j≤i p̄j −
∑

j<i
¯
pj for all i = 11 : : : 1 n.

Proof. By Lemma 4.3, we immediately obtain
¯
p1 ≤ A∗

2 − A∗
1 ≤ p̄1 and A∗

i+1 − A∗
i ≤

∑

j≤i p̄j −
∑

j<i
¯
pj for

all i = 21 : : : 1 n. Next, we show that
¯
pi ≤ A∗

i+1 − A∗
i holds for all i = 21 : : : 1 n. For contradiction, suppose

¯
pk +A∗

k > A∗
k+1 for some k = 21 : : : 1 n. Then job k is late at least 4

¯
pk +A∗

k −A∗
k+15 time units, so increasing

A∗
k+1 to

¯
pk + A∗

k will improve the objective function by ok4
¯
pk + A∗

k − A∗
k+15 ≥ 0. Therefore, we must have

¯
pi ≤A∗

i+1 −A∗
i for all i = 21 : : : 1 n. �

Lemma 4.5 (Nondecreasing Appointment Dates). There exists an optimal appointment vector A∗ ∈ K
with nondecreasing components; i.e., A∗

i ≤A∗
i+1 for all i = 11 : : : 1 n.

Proof. By Lemma 4.4, A∗
i+1 −A∗

i ≥
¯
pi ≥ 0 (1 ≤ i ≤ n). �

5. Optimality of an integer appointment vector. The existence of an optimal appointment vector that
is integer is crucial. It implies that we can restrict attention to integer appointment vectors without loss of
optimality. We establish this result in the appointment vector integrality Theorem 5.1. Its proof is surprisingly
nontrivial.

Let A∗ be any noninteger appointment vector and let A∗
f be the first noninteger component of A∗. Knowing all

the jobs which have the same fractional part as A∗
f is crucial, so we define J to be the set of all jobs j ≥ f such

that A∗
j −A∗

f is integer. Let � denote the set of integers, and let �x� = sup8n ∈�: n≤ x9 and �x� = inf8n ∈�:
n≥ x9 for x ∈�. Let �4x5 be the distance to the nearest integer for x ∈�; i.e., �4x5= min4x− �x�1 �x� − x5.
Let ã be a strictly positive scalar satisfying 0 < ã < 1

2 min4ã11 ã25, where ã1 = 1
4 min8�4�A∗

j − A∗
k�52 j ∈ J ,

k 6∈ J 9 > 0 and ã2 = 1
4 min

{

�4�A∗
j − A∗

k�52 j 6∈ J , k 6∈ J 1Aj − Ak 6∈ �9 > 00 We use ã to construct two new
appointment schedules A′ and A′′ from A∗: let A′

j = A∗
j − ã if j ∈ J , and A′

j = A∗
j otherwise; similarly, let

A′′
j = A∗

j +ã if j ∈ J , and A′′
j = A∗

j otherwise. For any realization of the processing duration vector p, denote
the completion times of job j as C∗

j , C ′
j , C

′′
j in schedules A∗, A′, and A′′, respectively.

One of the main ideas in proving the appointment vector integrality Theorem 5.1 is that ã is small enough
so that there is “no event change” when we move from schedule A∗ to schedules A′ and A′′. When there is
no event change, we show in Lemma 5.9 that our objective function changes linearly between schedules A′

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Begen and Queyranne: Appointment Scheduling
246 Mathematics of Operations Research 36(2), pp. 240–257, © 2011 INFORMS

and A′′. To make the no-event change concept precise, we define the following. Job i (1 < i ≤ n+ 1) is late if
C∗

i−1 >A∗
i (strictly positive tardiness), early if C∗

i−1 <A∗
i (strictly positive earliness), just-on-time if C∗

i−1 = A∗
i ,

and on-time if C∗
i−1 ≤A∗

i . Then, no-event change means that if any job is late, early, or just-on-time, respectively,
in schedule A∗, then it is also late, early, or just-on-time, respectively, in both schedules A′ and A′′.

We consider all possible realizations r of the random processing duration vector p, so ri is the corresponding
realization of the processing duration pi. We start by establishing relationships between the completion times in
the schedules A′ and A∗, and A′′ and A∗.

Lemma 5.1. For every realization of the processing durations and every j = 11 : : : 1 n+ 1, C∗
j +ã ≥ C ′′

j ≥

C∗
j ≥C ′

j ≥C∗
j −ã.

Proof. Let 1 ≤ j ≤ n+1 and let r be a realization of p. Then A∗
j −ã≤A′

j ≤A∗
j ≤A′′

j ≤A∗
j +ã by definition

of A′ and A′′. By the critical path Lemma 4.1, C∗
j = maxk≤j8A

∗
k +

∑j
i=k ri9, C

′
j = maxk≤j8A

′
k +

∑j
i=k ri9, and

C ′′
j = maxk≤j8A

′′
k +

∑j
i=k ri9. Hence, A′

j ≤ A∗
j ≤ A′′

j implies that C ′
j ≤ C∗

j ≤ C ′′
j . On the other hand, A∗

j −ã ≤ A′
j

implies that C∗
j − ã = maxk≤j8A

∗
k − ã +

∑j
i=k ri9 ≤ maxk≤j8A

′
k +

∑j
i=k ri9 = C ′

j , so C∗
j − ã ≤ C ′

j . Similarly
A∗

j +ã ≥ A′′
j implies that C∗

j +ã = maxh≤j8A
∗
k +ã+

∑j
i=k ri9 ≥ maxk≤j8A

′′
k +

∑j
i=k ri9 = C ′′

j , so C∗
j +ã ≥ C ′′

j .
The result follows. �

The next two results are about late and early jobs. Lemma 5.2 below implies that if job k is late (resp., early),
then its tardiness (resp., earliness) is strictly greater than 2ã. Lemma 5.3 implies that if job k is late (resp.,
early) in schedule A∗, then it is also late (resp., early) in A′ and A′′.

Lemma 5.2. For every realization of the processing durations and every k = 21 : : : 1 n+1, if �C∗
k−1 −A∗

k�> 0,
then �C∗

k−1 −A∗
k�> 2ã.

Proof. Let r be a realization of p. Let t be the last on-time job before k (1 ≤ t < k) so C∗
k−1 =A∗

t +
∑k−1

i=t ri.
Note that t exists and is well defined since job 1 is always on time; i.e., A∗

1 = 0. We consider two cases:
4A∗

k −A∗
t 5 ∈� or 4A∗

k −A∗
t 5 6∈�. If 4A∗

k −A∗
t 5 ∈�, then 0 < �C∗

k−1 −A∗
k� = �A∗

t +
∑k−1

i=t ri −A∗
k�, but since the ris

and A∗
k − A∗

t are integer, �A∗
t +

∑k−1
i=t ri − A∗

k� is a positive integer, hence �C∗
k−1 − A∗

k� = �A∗
t +

∑k−1
i=t ri − A∗

k� ≥

1 > 2ã. If A∗
k − A∗

t is not integer, then �4A∗
k − A∗

t 5 > 2ã, and this implies �A∗
k −A∗

t � − 4A∗
k − A∗

t 5 > 2ã and
4A∗

k −A∗
t 5− �A∗

k −A∗
t � > 2ã. Since

∑k−1
i=t ri is integer, we must have either

∑k−1
i=t ri ≤ �A∗

k −A∗
t � or

∑k−1
i=t ri ≥

�A∗
k −A∗

t �. Therefore �C∗
k−1 −A∗

k� = �A∗
t +

∑k−1
i=t ri −A∗

k�> 2ã. �
Lemma 5.3. For every realization of the processing duration and every k = 21 : : : 1 n+ 1, if C∗

k−1 >A∗
k, then

C ′
k−1 >A′

k and C ′′
k−1 >A′′

k , and if C∗
k−1 <A∗

k, then C ′
k−1 <A′

k and C ′′
k−1 <A′′

k .

Proof. By Lemma 5.2, C∗
k−1 > A∗

k implies C∗
k−1 − A∗

k > 2ã. Note that A∗
k − ã ≤ A′

k ≤ A∗
k ≤ A′′

k ≤ A∗
k + ã

by definition, and C∗
k−1 + ã ≥ C ′′

k−1 ≥ C∗
k−1 ≥ C ′

k−1 ≥ C∗
k−1 − ã by Lemma 5.1. Then C∗

k−1 − A∗
k > 2ã implies

C ′
k−1 − A′

k ≥ C∗
k−1 − ã − A∗

k > ã and C ′′
k−1 − A′′

k ≥ C∗
k−1 − A∗

k − ã > ã. Similarly, by Lemma 5.2, C∗
k−1 < A∗

k

implies A∗
k − C∗

k−1 > 2ã. Note that A∗
k − ã ≤ A′

k ≤ A∗
k ≤ A′′

k ≤ A∗
k + ã by definition, and C∗

k−1 + ã ≥ C ′′
k−1 ≥

C∗
k−1 ≥ C ′

k−1 ≥ C∗
k−1 − ã by Lemma 5.1. Then A∗

k − C∗
k−1 > 2ã implies A′

k − C ′
k−1 ≥ A∗

k − C∗
k−1 − ã > ã and

A′′
k −C ′′

k−1 ≥A∗
k −C∗

k−1 −ã>ã. The result follows. �
Just-on-time jobs require more care, and we need further definitions and results before we can establish

similar results as in Lemmas 5.2 and 5.3. Let a block B6t1 k7 be a sequence of consecutive jobs, 6t1 t+11 : : : 1 k7
(1 ≤ t < k ≤ n+ 1), such that either t = 1 or job t is early, i.e., C∗

t−1 < S∗
t = A∗

t ; no other job in the block is
early, i.e., S∗

j+1 = C∗
j ≥ A∗

j+1 for j = t + 11 : : : 1 k; and job k is just-on-time, i.e., C∗
k−1 = A∗

k. Let K = 8i2 t <
i ≤ k and C∗

i−1 = A∗
i 9 denote the set of just-on-time jobs in the block B6t1 k7. So we have S∗

t = A∗
t and S∗

j =

A∗
j =C∗

j−1 for all j ∈K. Our next result, Lemma 5.4, implies that the first (job t) and all just-on-time jobs in a
block (i.e., elements of K) are either all in J or all outside J .

Lemma 5.4. If B6t1 k7 is a block, then either 8t9∪K ⊆ J or 8t9∪K ⊆ B6t1 k7\J .

Proof. Let j ∈K. We have C∗
j−1 =A∗

t +
∑j−1

i=t ri since t is on time, and there is no idle time between t and j .
We obtain 0 = C∗

j−1 −A∗
j = A∗

t +
∑j−1

i=t ri −A∗
j . Since

∑j−1
i=t ri is integer, A∗

j −A∗
t must be integer. This implies

that if j ∈ J , then t ∈ J , and if j 6∈ J , then t 6∈ J . �
Lemma 5.5 will be used to prove Lemmas 5.6 and 5.7.

Lemma 5.5. Let k ∈ 821 : : : 1 n+ 19 be such that A∗
k 6∈�. Then for every realization of the processing dura-

tions such that C∗
k−1 =A∗

k, there is an early job j < k.

Proof. Let r be a realization of p. By contradiction, assume there is no early job before job k. Then
C∗

k−1 =A∗
1 +

∑k−1
i=1 ri =A∗

k. This implies A∗
k ∈� (since A∗

1 = 0 and
∑k−1

i=1 ri are integer), a contradiction. �
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In Lemmas 5.6 and 5.7 below we prove that no event change occurs for any just-on-time job. Therefore
Lemma 5.8 states that no event change occurs for any job.

Lemma 5.6. Let k ∈ 821 : : : 1 n+ 19. For every realization of the processing durations such that C∗
k−1 = A∗

k,
if there exists an early job j < k, then C ′

k−1 =A′
k and C ′′

k−1 =A′′
k .

Proof. Let r be a realization of p. Let t be the last early job before k, so B6t1 k7 is a block. As explained
above, let K = 8i2 t < i ≤ k and C∗

i−1 = A∗
i 9 be the set of just-on-time jobs between t and k. By Lemma 5.4,

either (i) 8t9∪K ⊆ J or (ii) 8t9∪K ⊆ B6t1 k7\J .
(i) 8t9∪K ⊆ J . First, by induction we show that C ′

j =C∗
j −ã for all j ∈ B6t1 k7. Indeed, C ′

t−1 ≤C∗
t−1 <A∗

t −

2ã<A′
t (by Lemmas 5.1 and 5.2) so S ′

t =A′
t =A∗

t −ã and C ′
t =A∗

t −ã+ rt =C∗
t −ã. Consider t < j ∈ B6t1 k7.

By inductive assumption, C ′
j−1 = C∗

j−1 − ã. If j ∈ K, then j ∈ J and A′
j = A∗

j − ã, so S ′
j = max8C ′

j−11A
′
j9 =

max8C∗
j−11A

∗
j 9 − ã = C∗

j−1 − ã. Otherwise, j 6∈ K, i.e., j is late. Then by Lemma 5.2, C∗
j−1 > A∗

j + 2ã. So
A′

j ≤A∗
j <C∗

j−1 −2ã=C ′
j−1 −ã, and hence S ′

j =C ′
j−1 =C∗

j−1 −ã. In both cases, C ′
j = S ′

j + rj =C∗
j−1 −ã+ rj =

max8C∗
j−11A

∗
j 9+rj −ã=C∗

j −ã, completing our inductive proof. This implies that C ′
k−1 =C∗

k−1 −ã=A∗
k −ã=

A′
k since k ∈K ⊆ J so C ′

k−1 =A′
k as claimed.

Similarly, by induction we show that C ′′
j = C∗

j + ã for all j ∈ B6t1 k7. Indeed, C ′′
t−1 ≤ C∗

t−1 + ã < A∗
t <

A∗
t + ã=A′′

t (by Lemmas 5.1 and 5.2), so S ′′
t = A′′

t = A∗
t + ã and C ′′

t = A∗
t + ã + rt = C∗

t + ã. Consider
t < j ∈ B6t1 k7. By inductive assumption, C ′′

j−1 = C∗
j−1 + ã. If j ∈ K, then j ∈ J and A′′

j = A∗
j + ã, so S ′′

j =

max8C ′′
j−11A

′′
j 9 = max8C∗

j−11A
∗
j 9+ã = C∗

j−1 +ã. Otherwise, j 6∈ K, i.e., j is late. Then by Lemma 5.2 C∗
j−1 >

A∗
j + 2ã. So A′′

j ≤A∗
j +ã<C∗

j−1 −ã= C ′′
j−1 − 2ã, and hence S ′′

j = C ′′
j−1 = C∗

j−1 +ã, completing our inductive
proof. In both cases, C ′′

j = S ′′
j + rj = C∗

j−1 + ã + rj = max8C∗
j−11A

∗
j 9 + rj + ã = C∗

j + ã. This implies that
C ′′

k−1 =C∗
k−1 +ã=A∗

k +ã=A′′
k since k ∈K ⊆ J , so C ′′

k−1 =A′′
k as claimed.

(ii) 8t9∪K ⊆ B6t1 k7\J . First, by induction we show that C ′
j =C∗

j for all j ∈ B6t1 k7. Indeed, C ′
t−1 ≤C∗

t−1 <
A∗

t −2ã<A∗
t =A′

t (by Lemmas 5.1 and 5.2), so S ′
t =A′

t =A∗
t and C ′

t =A∗
t +rt =C∗

t . Consider t < j ∈ B6t1 k7. By
inductive assumption, C ′

j−1 =C∗
j−1. If j ∈K, then j 6∈ J and A′

j =A∗
j , so S ′

j = max8C ′
j−11A

′
j9= max8C∗

j−1 −A∗
j 9=

C∗
j−1. Otherwise, j 6∈K, i.e., j is late. Then by Lemma 5.2, C∗

j−1 >A∗
j +2ã. So A′

j ≤A∗
j <C∗

j−1 −2ã=C ′
j−1 −2ã,

and hence S ′
j =C ′

j−1 =C∗
j−1. In both cases, C ′

j = S ′
j + rj =C∗

j−1 + rj = max8C∗
j−11A

∗
j 9+ rj =C∗

j , completing our
inductive proof. This implies that C ′

k−1 =C∗
k−1 =A∗

k =A′
k, since k ∈K and k 6∈ J , so C ′

k−1 =A′
k as claimed.

Similarly, by induction we show that C ′′
j = C∗

j for all j ∈ B6t1 k7. Indeed, C ′′
t−1 ≤ C∗

t−1 + ã < A∗
t = A′′

t (by
Lemmas 5.1 and 5.2), so S ′′

t =A′′
t =A∗

t and C ′′
t =A∗

t +rt =C∗
t . Consider t < j ∈ B6t1 k7. By inductive assumption,

C ′′
j−1 = C∗

j−1. If j ∈ K, then j 6∈ J and A′′
j = A∗

j , so S ′′
j = max8C ′′

j−11A
′′
j 9 = max8C∗

j−11A
∗
j 9 = C∗

j−1. Otherwise,
j 6∈K, i.e., j is late. Then by Lemma 5.2, C∗

j−1 >A∗
j + 2ã. So A′′

j ≤A∗
j +ã<C∗

j−1 −ã= C ′′
j−1 −ã, and hence

S ′′
j = C ′′

j−1 = C∗
j−1, completing our inductive proof. In both cases, C ′′

j = S ′′
j + rj = C∗

j−1 + rj = max8C∗
j−11A

∗
j 9+

rj =C∗
j . This implies that C ′′

k−1 =C∗
k−1 =A∗

k =A′′
k , since k ∈K and k 6∈K, so C ′′

k−1 =A′′
k as claimed. �

Lemma 5.7. Let k ∈ 821 : : : 1 n+ 19. For every realization of the processing durations such that C∗
k−1 = A∗

k,
we have C ′

k−1 =A′
k and C ′′

k−1 =A′′
k .

Proof. If there is an early job before k, then the result follows from Lemma 5.6. Otherwise, B611 k7 is
a block. Therefore C∗

k−1 = A∗
1 +

∑k−1
i=1 ri = A∗

k. Furthermore, A∗
k ∈ � by Lemma 5.5 so k 6∈ J . Therefore 819 ∪

K ⊆ B611 k7\J by Lemma 5.4, and hence the result follows in a similar way to part (ii) of the proof for
Lemma 5.6. �

Our next result establishes that no event change occurs for any job and directly follows from Lemmas 5.3
and 5.7. We define the sign of a real number x as sign4x5= 1 if x > 0; 0 if x = 0; and −1 if x < 0.

Lemma 5.8. For every job j=21: : : 1n+1, and every realization of the processing durations,

sign4C ′

j−1 −A′

j5= sign4C ′′

j−1 −A′′

j 5= sign4C∗

j−1 −A∗

j 50

Lemma 5.9 below gives a consequence on the objective function of this no-event change result.

Lemma 5.9. F changes linearly with ã between A′ and A′′.

Proof. There is a no-event change when moving from A′ to A′′ by Lemma 5.8. Therefore for every real-
ization r of the processing duration vector p, F 4· � p= r5 changes linearly with ã between A′ and A′′. Hence F,
F 4 · 5= Ep6F 4· � p57, also changes linearly with ã between A′ and A′′. �

Theorem 5.1 (Appointment Vector Integrality). If the processing durations are integer random vari-
ables, then there exists an optimal appointment vector that is integer.
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Proof. By Lemma 4.3 we know that there exists an optimal appointment schedule in the set K= 8A ∈�n+1:

¯
A ≤ A ≤ Ā9. Let A denote the set of all such optimal appointment vectors in K, so A is nonempty, bounded
and closed, since by Lemma 4.2, F is continuous. For A ∈A, let

I4A5=

{

min8Aj 2 j ∈ 821 : : : 1 n+ 19 and Aj 6∈�9 if A 6∈�n+11

n ∗ p̄max + 1 if A ∈�n+10

We claim I4 · 5 is upper semicontinuous (usc) on the compact set A. If A ∈A∩�n+1, then I4A5= h+1 ≥ I4B5
for all B ∈A, implying that I4 · 5 is usc at A. Otherwise A ∈A\�n+1, and let I4A5=Ak. For any � > 0, let �=

min8�1 I4A5−�Ak�1 �Ak�− I4A59 > 0. For all B ∈A, �B−A�<� implies Bk >Ak −�≥Ak − 4I4A5−�Ak�5=

�Ak� and Bk <Ak +�≤Ak +�Ak�− I4A5= �Ak�. Therefore Bk is fractional, so I4B5≤ Bk ≤Ak +� = I4A5+�.
Therefore I4 · 5 is usc at A ∈A\�n+1. This completes the proof that I4 · 5 is usc on A.

The fact that I4 · 5 is usc and A is compact implies that there exists an element A∗ of A maximizing I4 · 5.
For contradiction, assume A∗ 6∈�n+1. Let f = min8i2 A∗

i = I4A∗59, so for all j < f , A∗
j < I4A∗5 and thus A∗

j ∈�.
Let A′ and A′′ be the schedules derived from A∗ as defined at the beginning of this section. By optimality,
F 4A∗5 ≤ F 4A′5 and F 4A∗5 ≤ F 4A′′5. But by Lemma 5.9, F 4A∗5 changes linearly with ã between A′ and A′′.
Hence we must have F 4A∗5 = F 4A′5 = F 4A′′5. Note that A′′ ≥ A∗ ≥

¯
A and, for every j ∈ J , A′′

j = A∗
j + ã <

�A∗
j � ≤ Āj so A′′ ≤ Ā. This shows that A′′ ∈K and therefore A′′ ∈A. But I4A∗5=A∗

f <A∗
f +ã=A′′

f = I4A′′5,
i.e., I4A∗5 < I4A′′5, a contradiction with the definition of A∗. �

Remark 5.1. Linear overage and underage costs are essential for the integrality of an optimal appointment
vector. Consider the following example with quadratic costs. Let n = 1 and F 4A5 = Ep6o144C1 − A25

+52 +

u144A2 −C15
+527 with o1 = u1 = 1; and let Prob8p1 = 19 = Prob8p1 = 29 = 1

2 . Then F 4A5 = Ep624C1 −A25
27,

C1 = p1, and the optimum is A∗
2 = Ep4p15= 3

2 , which is not integer.

6. L-convexity. We start by investigating an important property of our objective function: submodularity
(see, e.g., Fujishige [13], Topkis [35], Murota [22]).

Definition 6.1. A function f 2 �q →� is submodular iff f 4z5+f 4y5≥ f 4z∨y5+f 4z∧y5 for all z1 y ∈�q ,
where z∨ y = 4max4zi1 yi52 0 ≤ i ≤ q5 ∈�q , z∧ y = 4min4zi1 yi52 0 ≤ i ≤ q5 ∈�q (Murota [22]).

We now define a property of an appointment vector and a realization of the processing durations that will
play an important role in this section.

Definition 6.2. A quadruple 4i1 j1 k1 l5 is a submodularity obstacle for appointment schedule A and a
realization r of the processing durations if

• 1 ≤ i < j < k < l ≤ n+ 1;
• the cost coefficients satisfy oj−1 + uj−1 +

∑

j≤t<k−1 ot <uk−1; and, in schedule A � p= r;
• both jobs i and j are on time;
• job l is the last job that starts on time before job n+ 1;
• there is no idle time between jobs i and j;
• there is positive idle time between jobs j and l; and
• job k is the first early job after j .

Proposition 6.1. For any realization r of the processing durations, the function F 4· � p= r5 is submodular
if and only if there is no submodularity obstacle for any integer appointment vector A.

Proof. Let r be any realization of the processing durations p. By the proof of Theorem 6.19 from
Murota [22], F 4· � p5 is submodular if and only if

F 4A+ 1i + 1j � p= r5− F 4A+ 1i � p= r5≤ F 4A+ 1j � p= r51−F 4A � p= r5 (2)

for each A ∈ �n+1 and let 1 ≤ i < j ≤ n+ 1. Let A ∈ �n+1 and i < j . Let l be the last on-time job before job
n+ 1. Job l is well defined since job 1 is always on time with S1 = A1. We consider the following cases for
job l.

(a) 1 ≤ l < j ≤ n+ 1; i.e., job j is late;
(b) l = j; i.e., job j is on time, and all the jobs after job j are late;
(c) j < l ≤ n+ 1.
To ease notation we use 4· � r5 to denote schedule 4· � p= r5. We now verify the submodular inequality (2) in

each case.
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Case (a) (l < j ≤ n + 1). Job j is late for both schedules 4A � r5 and 4A+ 1i � r5, and job j remains not
early when Aj is replaced with Aj + 1; therefore, F 4A+ 1i + 1j � r5−F 4A+ 1i � r5= −oj−1 and F 4A+ 1j � r5−

F 4A � r5= −oj−1. As a result, (2) holds with equality.
Case (b) (l = j ≤ n+ 1). Job j is the last on-time job for schedule 4A � r5, and 4A+ 1j � r5 pushes every job

after job j − 1 to the right by one unit. Therefore, F 4A+ 1j � r5− F 4A � r5 = uj−1 + oj + oj+1 + · · · + on ≥ 0.
If there is an idle slot between i and j , then job j will still be on time in schedules 4A+ 1i + 1j � r5 and
4A+ 1i � r5. Since every job after job j − 1 in 4A+ 1i + 1j � r5 will also be pushed to the right by one unit,
F 4A+ 1i + 1j � r5−F 4A+ 1i � r5= uj−1 +oj +oj+1 +· · ·+on, and (2) holds with equality. Otherwise, there is no
idle slot between i and j . Then job j will be late in schedule 4A+ 1i � r5 but on time in schedule 4A+ 1i + 1j � r5,
and all jobs k > j have the same start times in both schedules 4A+ 1i + 1j � r5 and 4A+ 1i � r5. Therefore,
F 4A+ 1i + 1j � r5− F 4A+ 1i � r5= −oj−1 ≤ 0, and inequality (2) holds.

Case (c) (j < l ≤ n + 1). If job j is late in schedule 4A � r5, then it is also late in schedule 4A+ 1i � r5,
and it remains not early when Aj is replaced with Aj + 1. Therefore, F 4A+ 1j � r5 − F 4A � r5 = −oj−1 and
F 4A+ 1i + 1j � r5− F 4A+ 1i � r5 = −oj−1. As a result, (2) holds with equality. Therefore, assume that job j is
on time in schedule 4A � r5. If there is positive idle time between i and j in schedule 4A � r5, then j remains on
time in schedule 4A+ 1i � r5; hence it also remains on time in 4A+ 1i + 1j � r5 and 4A+ 1j � r5, and (2) holds
with equality. Therefore, we assume that there is no idle time between i and j . We consider two subcases,
CR1 and CR2, for the right-hand side F 4A+ 1j � r5−F 4A � r5, and three subcases, CL1, CL2, and CL3, for the
left-hand side F 4A+ 1i + 1j � r5− F 4A+ 1i � r5, in schedule 4A � r):

(CR1) there is no idle time between j and l;
(CR2) there is positive idle time5 between j and l;
(CL1) job i is on-time;
(CL2) job i is late, and there is no idle time between j and l;
(CL3) job i is late and there is positive idle time between j and l.

In CR1, the time interval 6Aj1Aj + 17 is idle in schedule 4A+ 1j � r5 and every job j1 j + 11 : : : 1 n incurs one
more unit of overtime in schedule 4A+ 1j � r5 than in schedule 4A � r5 since all jobs between j and l are not
early and all jobs after l are late. Hence, in CR1, F 4A+ 1j � r5− F 4A � r5= uj−1 + oj + oj+1 + · · · + on.

In CR2, there is an early job k between j and l. Choose k to be the first early job after j so j < k < l.
Similarly to CR1, the time interval 6Aj1Aj + 17 is idle in schedule 4A+ 1j � r5 and every job j1 j + 11 : : : 1 k− 1
incurs one more unit of overtime in schedule 4A+ 1j � r5 than in schedule 4A � r5 since all jobs between j

and k are not early. Furthermore, job k − 1 incurs one less unit of idle time in schedule 4A+ 1j � r5 than in
schedule 4A � r5 since k remains not late in schedule 4A+ 1j � r5. Hence, in CR2, F 4A+ 1j � r5 − F 4A � r5 =

uj−1 + oj + oj+1 + · · · + ok−3 + ok−2 − uk−1.
In CL1, job i remains on time in both schedules 4A+ 1i � r5 and 4A+ 1i + 1j � r5, and because there is no idle

time between i and j , job j is late in schedule 4A+ 1i � r5 but on time in schedule 4A+ 1i + 1j � r5. Therefore,
schedule 4A+ 1i + 1j � r5 will have one unit less overtime (just before job j) than schedule 4A+ 1i � r5. Hence,
in CL1, F 4A+ 1i + 1j � p5− F 4A+ 1i � p5= −oj−1.

In CL2, job j is just-on-time in schedule 4A+ 1i � r5 but one time-unit early in schedule 4A+ 1i + 1j � r5.
In schedule 4A � r5, all jobs between j and l are not early (since there is no idle time between j and l), and
all jobs after l are late (since l is the last on-time job). Furthermore, all jobs after j are late in schedule
4A+ 1i � r5 and therefore also late in schedule 4A+ 1i + 1j � r5 because there is no idle time between i and j in
schedule 4A � r5. As a result, schedule 4A+ 1i + 1j � r5 has an idle slot just before Aj + 1 and one more unit of
overtime for each job j1 : : : 1 n+1 than schedule 4A+ 1i � r5. Hence, in CL2, F 4A+ 1i + 1j � r5−F 4A+ 1i � r5=

uj−1 + oj + oj+1 + · · · + on.
Similarly to CL2, in CL3, job j is just-on-time in schedule 4A+ 1i � r5 but one time-unit early in schedule

4A+ 1i + 1j � r5. Furthermore, there is a first early job k between j + 1 and l since there is positive idle time
between j and l in schedule 4A � r5. The time interval 6Aj1Aj + 17 is idle in schedule 4A+ 1i + 1j � r5 and
every job j1 j + 11 : : : 1 k − 1 incurs one more unit of overtime in schedule 4A+ 1i + 1j � r5 than in schedule
4A+ 1i+ � r5. Furthermore, job k − 1 incurs one less unit of idle time in schedule 4A+ 1i + 1j � r5 than in
schedule 4A+ 1i+ � r5. Hence, in CL3, F 4A+ 1i + 1j � r5 − F 4A+ 1i � r5 = uj−1 + oj + oj+1 + · · · + ok−3 +

ok−2 − uk−1. Note that we have the same job k as in CR2.

5 This means that there is at least one idle slot available between the jobs under consideration. In this case, there exists at least one job
which starts on time in the interval.
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As a result,

F 4A+ 1i + 1j � p5− F 4A+ 1i � p5− 4F 4A+ 1j � p5− F 4A � p55

=



















−oj−1 − 4uj−1 + oj + oj+1 + · · · + on5≤ 0 if CR1 and CL11

0 if CR1 and CL21

−oj−1 − 4uj−1 + oj + oj+1 + · · · + ok−3 + ok−2 − uk−15 if CR2 and CL11

0 if CR2 and CL30

If there is no submodularity obstacle, then inequality −oj−1 ≤ uj−1 + oj + oj+1 + · · · + ok−3 + ok−2 − uk−1 in
CR2 and CL1 is satisfied, and F 4· � p5 is submodular.

Conversely, if F 4· � p5 is submodular, then −oj−1 ≤ uj−1 + oj + oj+1 + · · · + ok−3 + ok−2 − uk−1 for all jobs
i < j < k < l such that j is on time, there is no idle time between i and j , there is positive idle time between j
and l, and job i is on-time; i.e., there is no submodularity obstacle for the appointment vector A and processing
duration realization r; hence there cannot be a submodularity obstacle. �

Corollary 6.1. If there is no submodularity obstacle for any integer appointment vector A and processing
duration realization r, then F is submodular.

Proof. The result holds since submodularity is preserved under expectation, F 4 · 5 = Ep6F 4· � p57, and by
Proposition 6.1, F 4· � p5 is submodular if there is no submodularity obstacle for any integer appointment vector
A and processing duration realization r. �

A submodularity obstacle is a very specific configuration, and it does not exist with reasonable cost structures
such as nonincreasing uis (ui+1 ≤ ui for all i) or nonincreasing (oi + ui)s (oi+1 + ui+1 ≤ oi + ui for all i). To
capture these cost structures we define the following.

Definition 6.3. The cost coefficients 4u1o5 are �-monotone if there exist real numbers �i (1 ≤ i ≤ n) such
that 0 ≤ �i ≤ oi and ui +�i are nonincreasing in i; i.e., ui +�i ≥ ui+1 +�i+1 for all i = 11 : : : 1 n− 1.

The following lemma establishes a relation between existence of a submodularity obstacle and �-monotonicity.

Proposition 6.2. If the cost coefficients 4u1o5 are �-monotone, then there is no submodularity obstacle for
any integer appointment vector A and processing duration realization r.

Proof. Assume 4u1o5 are �-monotone. It suffices to show that for every j ∈ 821 : : : 1 n9 there exists t ≥ j+1
such that oj−1 + uj−1 +

∑t−1
r=j or ≥ ut−1 (because with this cost structure no submodularity obstacle can exist

for any configuration of jobs with any integer appointment vector A and processing duration realization r
(Definition 6.2)). For contradiction, suppose oj−1 + uj−1 +

∑t−1
r=j or <ut−1 for all t ≥ j + 1. Then

�t−1 + oj−1 + uj−1 +

t−1
∑

r=j

or < ut−1 +�t−1 (add �t−1 to both sides)1

�t−1 +�j−1 + uj−1 +

t−1
∑

r=j

or < ut−1 +�t−1 (since �j−1 ≤ oj−1)1

�j−1 + uj−1 < ut−1 +�t−1

(

since
t−1
∑

r=j

or +�t−1 ≥ 0
)

,

but this is a contradiction to �-monotonicity. Therefore the result follows. �

Theorem 6.1 (Submodularity). If the cost vectors 4u1o5 are �-monotone, then F is submodular.

Proof. If the cost vectors 4u1o5 are �-monotone, then by Proposition 6.2 there is no submodularity obstacle
for any integer appointment vector A and processing duration realization r. Hence the result follows from
Corollary 6.1. �

Completion times, start times, and tardiness and their expectations are also submodular:

Corollary 6.2. The tardiness Tk, start time Sk, completion time Ck, and their expected values Ep6Tk7,
Ep6Sk7, and Ep6Ck7 are submodular functions of A for every k = 11 : : : 1 n.
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Proof. Recall that F 4· � p5 =
∑n

i=14oiTi + uiEi5. Let 1 ≤ k ≤ n, ui = 0 for all i, and oi = 1 if i = k and
0 otherwise. Then Tk = F 4· � p5. Therefore, Tk is submodular whenever F 4· � p5 is. By Proposition 6.1, F 4· � p5 is
submodular if there is no submodularity obstacle. But the chosen uis and ois are �-monotone so no submodularity
obstacle exists by Proposition 6.2. As a result, F 4· � p5 and hence, Tk is submodular. Next we show Sk is
submodular. S1 = 0 and Sk = Ak + max801Ck−1 − Ak9 = Ak + Tk−1 (1 < k ≤ n) by definition. Since Ak is a
scalar and Tk is submodular, Sk is also submodular. Similarly, Ck = Sk + pk (1 ≤ k ≤ n) by definition. Since
pk is a scalar and Sk is submodular, Ck is submodular. Finally, the expected values Ep6Tk7, Ep6Sk7, and Ep6Ck7
are submodular since submodularity is preserved under expectation and Tk, Sk, and Ck are submodular. This
completes the proof. �

Remark 6.1. The earliness Ek is not a submodular function of A in general. To see this, let A =

40131516195, deterministic processing durations p1 = 3, p2 = 2, p3 = 2, p4 = 1. E44A5 = 4A5 − C45
+ =

49 − 85+ = 1, and similarly, E44A+ 11 + 125 = 0, E44A+ 115 = 0, and E44A+ 125 = 0. Therefore, 1 + 0 =

E44A5+E44A+ 11 + 125 > E44A+ 115+E44A+ 125= 0 + 0. Hence, E4 is not submodular.
The objective function is not only submodular but also L-convex, an important discrete convexity property.

Before we show L-convexity results, we give the definition of L-convexity.
Definition 6.4. f 2 �q → � ∪ 8�9 is L-convex iff f 4z5 + f 4y5 ≥ f 4z ∨ y5 + f 4z ∧ y5 ∀ z1 ∀y ∈ �q and

∃r ∈ �2 f 4z+ 15= f 4z5+ r ∀ z ∈�q (Murota [22]).

Proposition 6.3. For any realization r of the processing durations, the function F 4· � p= r5 is L-convex if
and only if there is no submodularity obstacle for any integer appointment vector A and realization r.

Proof. Let r be a realization of the processing durations. If there is no submodularity obstacle for any
integer appointment vector A and realization r, then F 4· � p= r5 is submodular by Proposition 6.1, the first
property in the definition of L-convexity.

Recall that F 4A � p= r5 =
∑n

i=14oiTi + uiEi5, Ti = 4Ci − Ai+15
+, and Ei = 4Ai+1 − Ci5

+. Consider
F 4A+ 1 � p= r5=

∑n
i=14oiT

1
i + uiE

1
i 5, where x1

i = quantity of interest of job i with appointment vector A+ 1
for x ∈ 8S1C1T 1E9. Then S1

i = Si+1 and C1
i =Ci+1; hence T 1

i = Ti and E1
i =Ei. Therefore, F 4A+ 1 � p= r5−

F 4A � p= r5= 0. This gives us the second property of the L-convexity definition.
Conversely, if F 4· � p= r5 is L-convex, then F 4· � p5 must be submodular and by Proposition 6.1 there is no

submodularity obstacle for any integer appointment vector A. �
Corollary 6.3. If there is no submodularity obstacle for any integer appointment vector A and realiza-

tion r, then F 4 · 5 is L-convex.

Proof. The claim holds since L-convexity is preserved under expectation, F 4 · 5 = Ep6F 4· � p57, and by
Proposition 6.3, F 4· � p5 is L-convex if there is no submodularity obstacle for any integer appointment vector A
and realization r. �

Theorem 6.2 (L-Convexity). If the cost vectors 4u1o5 are �-monotone, then F 4A5 is L-convex.

Proof. If the cost coefficients 4u1o5 are �-monotone, then by Proposition 6.2 there is no submodularity
obstacle for any integer appointment vector A and processing duration realization r. Therefore, the result follows
from Corollary 6.3. �

7. Algorithms. Using algorithmic results Murota [22, 23], for minimizing L-convex functions, we can
minimize the expected cost F in polynomial time, using a polynomial number of expected cost computations
and submodular set minimizations.

Assume the input to our problem consists of the number n of jobs, the cost vectors u and o, the horizon h
over which F is to be minimized. Assume also that the processing times are integer and that we have an oracle
which computes the expected cost F 4A5 for any given integer appointment vector A.

Theorem 7.1 (Polynomial Time Algorithm 1). If the cost vectors 4u1o5 are �-monotone and the pro-
cessing durations are integer, then there exists an algorithm which minimizes F using polynomial time and a
polynomial number of expected cost evaluations.

Proof. The appointment vector integrality Theorem 5.1 implies that to minimize F we only need to consider
integer appointment vectors. If the cost vectors 4u1o5 are �-monotone, then F is an L-convex function by the
L-convexity Theorem 6.2. Then F can be minimized in O4�4n5EO n2 log4�h/2n�55 time by Iwata’s steepest
descent scaling algorithm (Murota [22, §10.3.2]) where �4n5 is the number of function evaluations required to
minimize a submodular set function over an n-element ground set and EO is the time needed for an expected
cost evaluation. �
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When the processing durations are independent, the expected cost of an integer appointment vector can be
evaluated efficiently. We use recursive equations for the probability distributions of the start time, completion
time, tardiness, and earliness of each job and compute F at an integer point A in O4n2p̄2

max5 time.

Theorem 7.2. If the processing durations are stochastically independent and A is an integer appointment
vector, then F 4A5 may be computed in O4n2p̄2

max5 time.

Proof. The first job starts at time zero so S1 =A1 = 0, and C1 = p1; i.e., the distribution of C1 is that of p1.
Next, we look at the start times Si (2 ≤ i ≤ n). We have Si = max4Ai1Ci−15 so for all k = 0111 : : : 1 np̄max,

Prob8Si = k9=











0 if k <Ai1

Prob8Ci−1 ≤ k9 if k =Ai1

Prob8Ci−1 = k9 if k >Ai0

(3)

Note that Si and pi are independent because Si is completely determined by p11 p21 : : : 1 pi−1 and A11A21 : : : 1Ai.
Since Ci = Si + pi, by conditioning on pi and using independence of pi and Si, we obtain for all k =

0111 : : : 1 np̄max,

Prob8Ci = k9= Prob8Si = k−pi9=

p̄i
∑

j=0

Prob8Si = k− j9Prob8pi = j91 (4)

and Prob8Ci−1 ≤ k9= Prob8Ci−1 = k9+Prob8Ci−1 ≤ k−19. For each i−1, Prob8Ci−1 ≤ k9 may be computed in
O44i− 15p̄max5 time. Hence, Prob8Ci = k9 can be computed once we have the distribution of Si. For each job i
and value k, computing Prob8Si = k9 by Equation (3) requires a constant number of operations, and computing
Prob8Ci = k9 by Equation (4) requires O4p̄i + 15 operations. Therefore the total number of operations needed
for computing the whole start time and completion time distributions for job i is O4np̄maxp̄max5. The distribution
of Ti and Ei, and their expected values EpTi and EpEi can then be determined in O4np̄max5 time. Therefore, the
objective value F 4A5 is obtained in O4n2p̄2

max5 time. �
The running time of the algorithm given in Theorem 7.1 depends on how the distributions of the process-

ing durations are given. Under the common assumption of independent durations, the input to the algorithm
includes the distribution of each processing duration pi, which specifies p̄i + 1 probabilities Prob8pi = x9 for
x = 0111 : : : 1 p̄i. In this case, F can be minimized in O4n9p̄2

max log p̄max5 time.

Theorem 7.3 (Polynomial Time Algorithm 2). If the processing durations are independent, integer-
valued random variables, and the cost vectors 4u1o5 are �-monotone, then we can minimize F in
O4n9p̄2

max log p̄max5 time.

Proof. The horizon h can be taken as np̄max ≥
∑n

i=1 p̄i, so h is polynomially bounded in the input size.
Theorem 7.2 shows that EO =O4h25 when processing durations are independent. Orlin [25, Theorem 4] shows
that �4n5=O4n55. The result follows from the proof of Theorem 7.1. �

8. Objective function with a due date. Suppose that we are given a due date D for the end of processing,
instead of letting the model choose a planned makespan An+1. We assume D is integer and 0 ≤ D ≤

∑n
i=1 p̄i.

Let Ã= 4A11A21 : : : 1An5. Then our new objective becomes

F D4Ã5= Ep

[n−1
∑

j=1

(

oj4Cj −Aj+15
+

+ uj4Aj+1 −Cj5
+
)

+ on4Cn −D5+ + un4D−Cn5
+

]

0

We immediately observe that F 4Ã1D5 = F D4Ã5. Furthermore, F D has many properties such as discrete
convexity, optimal vector integrality, and existence of a polynomial time minimization algorithm.

We verify the properties of F D. Let K̃= 8Ã ∈�n2 Ã1 = 0,
∑

j<i
¯
pj ≤ Ãi ≤

∑

j<i p̄j for all i = 21 : : : 1 n9. Since
F 4Ã1D5= F D4Ã5, by using our previous results on F we obtain the following for F D.

Corollary 8.1. (i) Critical path Lemma 4.1 applies to F D.
(ii) Function F D is continuous.

(iii) There exists an optimal appointment schedule Ã∗ ∈ K̃.
(iv) There exists an optimal appointment schedule Ã∗ satisfying

¯
pi ≤ Ã∗

i+1 − Ã∗

i ≤
∑

j≤i

p̄j −
∑

j<i ¯
pj for i = 11 : : : 1 n− 10
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(v) There exists an optimal appointment vector Ã∗ ∈ K̃ with components nondecreasing; i.e., Ã∗
i ≤ Ã∗

i+1 for
all i = 11 : : : 1 n− 1.

(vi) F D4Ã5 may be computed in O4n2p̄2
max5 time if processing durations are independent and Ã is integer.

Proof. (i) Follows directly from critical path Lemma 4.1.
(ii) Continuity is preserved by projection onto a coordinate subspace. Therefore, the result follows from

Lemma 4.2.
(iii) The feasible set for F D is compact since 0 ≤D ≤

∑n
i=1 p̄i, and the compactness is preserved by projection

onto a coordinate subspace. Therefore, the result follows from Lemma 4.3.
(iv) Follows from Lemma 4.4 (by changing 1 ≤ i ≤ n to 1 ≤ i ≤ n− 1) and the fact that 0 ≤D ≤

∑n
i=1 p̄i.

(v) Follows from nondecreasing appointment dates Lemma 4.5 (by changing 1 ≤ i ≤ n to 1 ≤ i ≤ n− 1) and
the fact that 0 ≤D ≤

∑n
i=1 p̄i.

(vi) Since F 4Ã1D5 = F D4Ã5, we can compute F D4Ã5 exactly the same way we compute F 4A5 with
An+1 =D. Therefore the result follows from Theorem 7.2. �

We next verify that appointment vector integrality also holds for F D.

Corollary 8.2 (Appointment Vector Integrality). If the processing durations are integer random vari-
ables and the due date is integer, then there exists an optimal appointment vector that is integer.

Proof. Let Ã∗ be any noninteger appointment vector and let Ã∗
f be the first noninteger component of Ã∗.

As before, we define set J , �4x5, ã, Ã′ = 4Ã′
11 : : : 1 Ã

′
n5, and Ã′′ = 4Ã′′

11 : : : 1 Ã
′′
n5. We consider any realization r

of the processing durations. Then, Lemmas 5.1–5.9 follow for F D (either directly or by taking A∗
n+1 =D).

By Corollary 8.1 we know that there exists an optimal appointment schedule that is in the set K̃= 8Ã ∈�n:
Ã1 = 0,

∑

j<i
¯
pj ≤ Ãi ≤

∑

j<i p̄j for all i = 21 : : : 1 n9. Let Ã denote the set of all such optimal appointment

vectors in K̃, so Ã is nonempty, bounded, and closed, since by Corollary 8.1, F D is continuous. For Ã ∈ Ã, we
define I4 · 5 as before but by changing A to Ã and �n+1 to �n. Then, I4 · 5 is usc on Ã since upper semicontinuity
is preserved by projection onto a coordinate subspace.

The fact that I4 · 5 is usc and Ã is compact implies that there exists an element Ã∗ of Ã maximizing I4 · 5. By
contradiction, assume Ã∗ 6∈�n. Let f = min8i2 Ã∗

i = I4Ã∗59, so for all j < f , Ã∗
j < I4Ã∗5 and thus, Ã∗

j ∈�. Let
Ã′ and Ã′′ be the schedules derived from Ã∗ as defined at the beginning of §5 and this proof. By optimality,
F 4Ã∗5 ≤ F 4Ã′5 and F 4Ã∗5 ≤ F 4Ã′′5. But F 4Ã∗5 changes linearly with ã between Ã′ and Ã′′ as Lemma 5.9
applies to F D. Hence we must have F 4Ã∗5= F 4Ã′5= F 4Ã′′5. Note that Ã′′

i ≥ Ã∗
i ≥

∑

k<i
¯
pk for all i = 11 : : : 1 n

and, for every j ∈ J , Ã′′
j = Ã∗

j + ã < �Ã∗
j � ≤

∑

k<i p̄k so Ã′′
i ≤

∑

k<i p̄k for all i = 11 : : : 1 n. This shows that
Ã′′ ∈ K̃ and therefore Ã′′ ∈ Ã. But I4Ã∗5= Ã∗

f < Ã∗
f +ã= Ã′′

f = I4Ã′′5; i.e., I4Ã∗5 < I4Ã′′5, a contradiction with
the definition of Ã∗. �

Remark 8.1. Integrality of D is crucial for an integer optimal appointment vector. Consider the following
example.

F D4Ã5=Ep

[

o14C1 − Ã25
+

+ u14Ã2 −C15
+

+ o24C2 −D5+ + u24D−C25
+
]

with o1 = u1 = o2 = u2 = 1, D = 9
2 , p2 = 3 (deterministic p2), and p1 = 1 with probability 1

2 and p1 = 2
with probability 1

2 . Then, F 9/240115 = u2/4 + o1/2 + o2/4, F 9/240125 = o2/4 + u1/2 + o2/4, but F 9/2401 3
2 5 =

u1/4 + o1/4 + o2/4.
The next result is on the submodularity and discrete convexity of F D. Before providing the result, we give a

definition of L\-convexity (Murota [22]), the type of discrete convexity that F D has.
Definition 8.1. A function f 2 �q →�∪ 8�9 is L\-convex if and only if the function satisfies

f 4z5+ f 4y5≥ f 44z−�15∨ y5+ f 4z∧ 4y+�155 ∀ z1 y ∈�q1 ∀�≥ 0 and � ∈�0

There are a few equivalent definitions available for L\-convexity (Murota [22]). We used the one called
translation-submodularity in Definition 8.1. (Note that translation-submodularity becomes submodularity when
�= 0.) Now, we provide the result for F D.

Corollary 8.3 (L\-convexity). If the cost coefficients 4u1o5 are �-monotone, then F D is L\-convex and
submodular.

Proof. Assume that the cost coefficients 4u1o5 are �-monotone. Then, by L-convexity Theorem 6.2, F is
L-convex. Theorem 7.1 of Murota [22] shows that an L-convex function is L\-convex. Hence ∀A1B ∈ �n+1,
∀�≥ 0, and � ∈� we have

F 4A5+ F 4B5≥ F
(

4A−�15∨B
)

+ F
(

A∧ 4B+�15
)

0 (5)
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The inequality (5) particularly holds for A= 4Ã1D5 and B= 4B̃1D5, and by using the fact that F D4 · 5= F 4·1D5
we obtain the following inequalities below for D ∈�, ∀ Ã1 B̃ ∈�n, ∀�≥ 0, and � ∈�:

F 4Ã1D5+ F 4B̃1D5≥ F
(

44Ã1D5−�15∨ 4B̃1D5
)

+ F
(

4Ã1D5∧ 44B̃1D5+�15
)

1 (6)

F 4Ã1D5+ F 4B̃1D5≥ F
(

4Ã−�1n1D−�5∨ 4B̃1D5
)

+ F
(

4Ã1D5∧ 4B̃+�1n1D+�5
)

1 (7)

F 4Ã1D5+ F 4B̃1D5≥ F
(

Ã−�1n ∨ B̃1D
)

+ F
(

Ã∧ B̃+�1n1D
)

1 (8)

F D4Ã5+ F D4B̃5≥ F D
(

4Ã−�1n5∨ B̃
)

+ F D
(

Ã∧ 4B̃+�1n5
)

1 (9)

where 1n is a vector of 1s in �n. (We used notation 1n to differentiate it from 1, which is a vector of 1s in �n+1.)
Inequality (6) follows from (5) and A = 4Ã1D5 and B = 4B̃1D5. In (7) we rewrite the terms of (6) by noting
4Ã1D5 − �1 = 4Ã − �1n1D − �) and 4B̃1D5 + �1 = 4B̃ + �1n1D + �5. Inequality (8) follows from (7) with
component-by-component ∨ and ∧ operations. Finally, we obtain inequality (9) by using the fact that F D4 · 5=

F 4·1D5. Inequality (9) shows that F D is L\-convex and submodular. (Take �= 0 for submodularity.) �
Similarly to F , we can minimize F D by using algorithmic results for L\-convexity (Murota [22, 23]), with

a polynomial number of expected cost computations and submodular set minimizations. As in the case of F ,
assume the input to our problem consists of the number n of jobs, the cost vectors u and o, and the horizon h
over which F D is to be minimized. We also assume that the processing times are integer and that we have an
oracle that computes the expected cost F D4Ã5 for any given integer appointment vector Ã.

Corollary 8.4 (Polynomial Time Algorithm 1). If the cost vectors 4u1o5 are �-monotone and the pro-
cessing durations are integer, then there exists an algorithm that minimizes F D using a polynomial time and
polynomial number of expected cost evaluations.

Proof. The appointment vector integrality Corollary 8.2 implies that we only need to consider integer
appointment vectors to minimize F D. If the cost vectors 4u1o5 are �-monotone, then F D is an L\-convex function
by the L\-convexity Corollary 8.3. Then F D can be minimized in O4�4n5EO n2 log4�h/2n�55 time by Iwata’s
steepest descent scaling algorithm (Murota [22, §10.3.2]). �

As in the case of F , when the processing durations are independent, we can evaluate the expected cost of an
integer appointment vector in O4n2p̄2

max5 time by Corollary 8.1. In the case of independent processing durations,
the input to the algorithm in Corollary 8.4 includes the distribution of each processing duration pi and we can
minimize F D in O4n9p̄2

max log p̄max5 time.

Corollary 8.5 (Polynomial Time Algorithm 2). If the processing durations are independent, integer-
valued random variables and the cost vectors 4u1o5 are �-monotone, then we can minimize F D in
O4n9p̄2

max log p̄max5 time.

Proof. The horizon h can be taken as np̄max ≥
∑n

i=1 p̄i, so h is polynomially bounded in the input size.
Corollary 8.1 shows that EO =O4h25 when processing durations are independent. Orlin [25, Theorem 4] shows
that �4n5=O4n55. The result follows from the proof of Corollary 8.4. �

9. No-shows and emergency jobs. No-shows and emergency jobs may have important practical applications
and implications. For example, no-shows can be quite important in certain outpatient exams such as MRI scans
(Hassin and Mendel [16]). Similarly, emergencies, such as emergency surgeries or examinations, can be a huge
factor affecting the planned appointment schedules. With some modifications and assumptions, our model can
handle no-shows and emergency jobs (that arrive when the processor is busy) in finding an optimal appointment
schedule.

We first discuss no-shows. Suppose that there is some probability no-showi that job i will not show up. If job
i does not show up, then its processing duration becomes zero. On the other hand, if it does show up, then its
processing duration will be determined by its distribution. Therefore, all we need to do is update the processing
duration distribution pi of job i to take this no-show possibility into account. We can do so by multiplying
41 − no-showi5 with Prob8pi = k9 for all k > 0 and assign Prob8pi = 09= 1 −

∑

k>0 Prob8pi = k9.
Emergency jobs arrive after the processing starts without any appointments, and they may need to be processed

as soon as possible. We take a nonpreemptive approach; i.e., we finish processing the current job first. We
assume that emergency jobs may arrive only during processing of another job (i.e., planned or emergency). This
is a reasonable assumption when either the ratio of total idle time between planned jobs to total processing
durations of planned jobs is small or there are not many emergencies. (Our model falls short in taking into
account emergency jobs that arrive during idle time. If the number of emergencies is large, then a more effective
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Emergency job arrivals

~pi

pi pe1

Ai Ci–1 Ai+1
Ai–1

~pi–1
~pi+1

pe2
pe3

Figure 3. An example schedule with emergency jobs.

approach may be to treat them as a planned job and reserve capacity in advance in the schedule.) Therefore
during processing of planned job i, some emergency jobs may arrive, and during these emergencies some other
emergency jobs may arrive. All these emergency jobs will be processed back-to-back just after job i and before
job i+ 1. Observe that there will be no idle time between the processing of emergency jobs, so we may think
of the duration of these emergency jobs processing as a lengthening of job is processing time. Therefore, the
problem reduces to finding the new processing duration distribution of job i. Figure 3 shows an example of a
schedule with emergency jobs.

We assume that there can be at most a certain number of emergency jobs that can arrive during processing
of a job, and the distribution of the number of emergency job arrivals is given by a discrete probability distri-
bution. Furthermore, processing duration distribution of emergency jobs is also given by a discrete probability
distribution. There can be at most mi

max emergency jobs that can arrive during the processing of job i and
at most me

max emergency jobs that can arrive during the processing of an emergency job. Note that there can
be at most M = mi

max + mi
max ∗ me

max emergency jobs that will be processed after job i and before job i + 1.
Let pe be the discrete processing duration distribution of emergency jobs. (We use the same processing duration
distribution for each emergency job, but one may take pi

e as the discrete processing duration distribution of
emergency jobs arriving during job i.) We denote the total processing duration of emergency jobs that will be
processed just after job i as P i. Then, all we need to do is find the distribution of the new job processing
duration p̃i = pi + P i, because once we have p̃is, we can minimize F D

E 4 · 5 = Ep̃6F
D4· � p̃57 as we minimize

F D4 · 5=Ep6F
D4· � p57, and FE4 · 5=Ep̃6F 4· � p̃57 as we minimize F 4 · 5=Ep6F 4· � p57, and solve the scheduling

problem with emergency jobs.
We now obtain the distribution of p̃i = pi + P i. Let mi (0 ≤ mi ≤ M) be the number of emergency jobs that

will be arriving and processed after job i and before job i+1. We define P i
k =

∑k
j=1 p

e (1 ≤ k ≤M). Distributions
P i
k (1 ≤ k ≤M) can be computed in a recursive manner starting from P i

1 = pe and computing P i
k = P i

k−1 +pe for
1 < k ≤M . Once we have the distribution of P i

ks we can find the distributions of P i (1 ≤ i ≤ n) as follows:

Prob8P i
= 09= Prob8mi

= 09+

M
∑

k=1

Prob8mi
= k9Prob8P i

k = 091

Prob8P i
= j9=

M
∑

k=1

Prob8mi
= k9Prob8P i

k = j9 for j = 1121 : : : 1Mp̄max0

The last thing we need is to obtain p̃i = pi +P i. This is just a single convolution of random variables pi (already
available) and P i (just obtained).

10. Current work, future work, and conclusion. After developing our modeling framework and prov-
ing that we can find an optimal appointment schedule in polynomial time, we are now focusing on practical
implementation issues. Our objective as a function of continuous appointment vector is nonsmooth but we have
shown that it is convex, and we characterized its subdifferential. We have obtained closed-form formulas for the
subdifferential as well as for any subgradient. This characterization is very useful; it allows us to develop two
very important extensions.

In the first extension (Begen et al. [4]), we relax the perfect information assumption on the probability
distributions of processing durations, i.e., we assume that processing duration distributions are not known and can
only be statistically estimated on the basis of past data or statistical sampling. Our approach is nonparametric,
and we assume no (prior) information about processing duration distributions. We develop a sample-based
approach to determine the number of independent samples required to obtain a provably near-optimal solution
with high confidence, i.e., the cost of the sample-based optimal schedule is with high probability no more than
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41 + �5 times the cost of an optimal schedule determined from knowing the true distributions. This result has
important practical implications, as the true processing duration distributions are often not known and only their
past realizations or some samples are available.

In the second extension (Begen and Queyranne [2]), we use the subdifferential characterization with indepen-
dent processing durations and compute a subgradient in polynomial time for any given appointment schedule.
This is not a trivial task as the subdifferential formulas include exponentially many terms, and some of the prob-
ability computations are complicated. We also obtain an easily computable lower bound on the optimal objective
value. Furthermore, we extend computation of the expected total cost (in polynomial time) for any (real-valued)
appointment vector. These allow us to use nonsmooth convex optimization techniques to find an optimal sched-
ule. Although we already have a polynomial time algorithm to find an optimal appointment schedule, it is not
clear at the moment which technique will work faster in practice. We are also considering hybrid algorithms
based on both discrete convexity and nonsmooth convex optimization combined with a special-purpose integer-
rounding method. Preliminary versions of these algorithms have been developed. The rounding algorithm takes
any fractional solution and rounds it to an integer one with the same or improved objective value. We are
planning to implement our algorithms and compare different approaches in computational experiments.

There are many exciting future directions for this research. One is to find an optimal sequence and appointment
schedule simultaneously, i.e., given the jobs, determine a sequence and a job appointment schedule minimizing
the total expected cost. This problem is likely to be hard, but it may be possible to develop heuristic algorithms
with performance guarantees. Studying some special cases for this problem may shed light on the general case.
Another objective is to put our findings into practice. We are in contact with local healthcare organizations to
apply our results with real data and compare the appointment schedules determined by our methods with current
practices.

In this paper, we study a discrete-time version of the appointment scheduling problem and establish discrete
convexity properties of the objective function. We prove that the objective function is L-convex under mild
assumptions on cost coefficients. Furthermore, we show that there exists an optimal integer appointment schedule
minimizing the objective. This result is important as it allows us to optimize only over integer appointment
schedules without loss of optimality. All these results on the objective function and optimal appointment schedule
enable us to develop a polynomial time algorithm, based on discrete convexity, that, for a given processing
sequence, finds an appointment schedule minimizing the total expected cost. When processing durations are
stochastically independent we evaluate the expected cost for a given processing order and an integer appointment
schedule efficiently in polynomial time. Independent processing durations lead to faster algorithms. Our modeling
framework can handle a given due date for the total processing (e.g., end-of-day for an operating room) after
which overtime is incurred, instead of letting the model choose an end date. We also extend our model and
framework to include no-shows and some emergencies. We believe the framework is portable and applicable to
many appointment systems in healthcare as well as in other areas.

Acknowledgments. This research was supported by a Discovery Grant from the Natural Sciences and Engi-
neering Research Council (NSERC) of Canada to the second author and by a PGSD3 NSERC scholarship to
the first author. Part of the results in this paper was preliminarily presented in Begen and Queyranne [1]. The
authors also thank the area editor and the review team for a constructive review process and their comments
that improved the paper.
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