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1. Introduction
We study the appointment (job, task) scheduling problem
with discrete random durations as recently studied in Begen
and Queyranne (2011). However, we assume that the prob-
ability distributions of job durations are not known and the
only available information on the durations is a set of inde-
pendent random samples. (Such samples may be obtained
from historical data.) We determine bounds on the number
of independent samples required to obtain a provably near-
optimal solution with high probability by using the results
developed in Begen (2010) on convexity and subdifferen-
tial of the objective function of the appointment scheduling
problem.

1.1. Appointment Scheduling Problem (ASP)

We adapt the notation of Begen and Queyranne (2011).
There are n + 1 jobs numbered 1121 0 0 0 1 n + 1 that need
to be sequentially processed (in the order 1121 0 0 0 1 n+ 1)
on a single processor. An appointment schedule (a vec-
tor of planned start times) needs to be determined before
any processing can start. That is, each job i is assigned
a planned start time Ai. In particular, job i will not be
available before Ai. The process durations are a priori ran-
dom and are realized only after all the appointment times
are set. Therefore some jobs may finish earlier, whereas

some others may finish later, than the appointment time
of the next job. If job i ends earlier than the next job’s
appointment time then the system experiences underage
cost at a rate of ui due to underutilization of the processor.
On the other hand, when job i finishes later than the next
job’s appointment time, the system is exposed to overage
cost at a rate of oi due to the wait of the next job and/or
overtime for the processor. Therefore there is a trade-off
between underutilization, waiting, and overtime, i.e., under-
age and overage. The goal is to find an appointment sched-
ule A = 4A11 0 0 0 1An+15 that minimizes the total expected
(underage and overage) cost. (We write all vectors as row
vectors.)

There are important real-world applications that fit this
model (especially in healthcare), such as surgery schedul-
ing, medical appointments, transportation, project manage-
ment, and production. Specifically, in surgery scheduling,
we can think of surgeries as the jobs/appointments, oper-
ating room/surgical team as the processor, and the hospital
as the scheduler. As observed in practice, surgery dura-
tions show variability (Strum et al. 2000) and determin-
ing planned start times, i.e., setting appointment times of
surgeries, is an important and challenging task (Erdogan
and Denton 2011). A surgery appointment schedule has a
direct impact on the amounts of overtime and idle time of
operating room(s) (Peltokorpi et al. 2008). An operating
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room’s overtime can be costly because it involves staff
overtime as well as additional overhead costs; on the other
hand, idle time costs can also be high because of the oppor-
tunity cost of unused capacity (Erdogan and Denton 2011).
A similar trade-off exists in scheduling container ships
arrivals at a container terminal (Sabria and Daganzo 1989).
Another example comes from a production system that has
multiple stages and stochastic leadtimes and the objective is
to determine planned leadtimes to minimize expected cost
(Elhafsi 2002). Note that in most of the applications men-
tioned above (e.g., tasks in project management, planes at
an airport gate/runway, container ships arriving to a termi-
nal, certain surgeries/tests in a hospital) the sequence of
jobs (tasks, appointments) is not controlled by the sched-
uler who makes the duration allocation decisions.

When there is only a single job the appointment schedul-
ing reduces to the well-known newsvendor problem. This
was first recognized by Weiss (1990). However, the prob-
lem departs from newsvendor characteristics and solution
methods in the case of two or more jobs. In the multi-
period newsvendor problem, naturally, decisions are taken
at each period sequentially. On the other hand, in appoint-
ment scheduling, one needs to have a schedule before
any processing can start, i.e., one determines all the deci-
sion variables (i.e., appointment times) simultaneously at
the beginning of the planning horizon (i.e., at time zero).
In Begen (2010), a link between a class of inventory prob-
lems (advance multiperiod quantity commitments) and the
ASP is established and it is shown that they can be solved
as special cases of the ASP.

1.2. Sampling-Based Appointment Scheduling

Begen and Queyranne (2011) assume complete information
on job duration distributions, i.e., there is an underlying
discrete joint probability distribution for job durations, and
this distribution is available and known fully. This may be
the case for some applications. However, in other situta-
tions, the true duration distribution is not known but its
(past) realizations or some samples may be available. For
example, hospitals and surgeons usually keep data on the
length of previous surgeries, but no one can fully charac-
terize the true distribution for a certain type of surgery.

In this paper, we assume that there is an underlying joint
discrete distribution for the job durations but we only have
access to a set of independent samples. For instance, this
may correspond to historical data such as daily observations
of surgery durations. Job durations need not be independent
but samples are. In other words, each sample is a vector of
durations where each component corresponds to a job dura-
tion, and these vectors are independent. Unlike the com-
mon assumption in the literature we do not require the job
duration probability distributions to be independent of each
other. Then the question becomes how to use these sam-
ples to find a “good solution.” For a given set of samples
we first form an empirical distribution. Then we solve the
ASP, by using the algorithmic results developed in Begen

and Queyranne (2011), with respect to the empirical dis-
tribution (i.e., as if this empirical distribution was the true
distribution) and obtain a (sampling-based) solution. Next
we establish a link between the number of samples and
the quality of the sampling-based solution (with respect to
the optimal solution relative to the true unknown distribu-
tion). In summary, we determine the number of indepen-
dent samples required to obtain a provably near-optimal
solution with high probability, i.e., the expected cost of the
sampling-based solution is with probability at least 1 − �
no more than 41 + �5 times the expected cost of the opti-
mal schedule that is computed based on the true (unknown)
distribution. We call this the sampling-based approach and
refer to this problem, i.e., the problem of finding such
a sampling-based solution, as the sampling appointment
scheduling problem and will denote it as sampling-ASP.
Our sample size bound is polynomial in the number of
jobs, the accuracy level, the confidence level, and the cost
coefficients. It does not depend on any parameter of the
underlying job durations distribution.

The rest of this paper is organized as follows. In the
remaining of this section, we present a brief literature
review and highlight the contributions of this paper. In §2,
we present notation and foundation needed for the sam-
pling analysis. We present our sampling analysis in §3. Sec-
tion 4 concludes the paper. We provide all the proofs in the
(online) appendix. An electronic companion to this paper is
available as part of the online version at http://dx.doi.org/
10.1287/opre.1120.1053.

1.3. Brief Literature Review

Researchers have studied the ASP for the last 60 years,
e.g., see Cayirli and Veral (2003). The existing litera-
ture only considers continuous processing durations with
full probability characterization, i.e., the probability distri-
butions of job processing durations are given as part of
the input. Because of the continuous processing durations
there are computational difficulties in the evaluation of the
expected total cost. For a given sequence of jobs, only
small instances can be solved to optimality; larger instances
require heuristics. Recently Begen and Queyranne (2011)
studied a discrete time version of the ASP, i.e., the process-
ing durations are integer and given by a discrete probabil-
ity distribution. This assumption fits many applications; for
example, surgeries and physician appointments are at best
scheduled on a minute-to-minute basis, and usually a block
of certain minutes. (For instance, one 20 minute physician
appointment could be two 10-minute blocks.) Begen and
Queyranne (2011) establish the discrete convexity of the
ASP objective function (under a mild condition) and show
that an optimal schedule can be found in polynomial time.

There has been much interest for studying stochas-
tic models with partial probabilistic characterization. For
example, inventory models, especially the newsvendor
problem and its multiperiod extension, have received a lot
of attention. Depending on how much is known about the
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true distribution(s) different approaches are possible, e.g.,
see Levi et al. (2007) and the references therein.

Levi et al. (2007) studied the classical newsvendor prob-
lem in the absence of a demand distribution. They use
the sampling average approximation (SAA) method (e.g.,
see Shapiro 2007) and subgradient information from the
(single period) newsvendor problem to determine the num-
ber of samples required for a provably near optimal solu-
tion. For the multiperiod case, they develop a dynamic
programming framework using information obtained from
the single period problem. Our objective, determining num-
ber of required samples, is similar to theirs. However we
work with a nonseparable multivariable objective function.
Furthermore, our computational approach is not dynamic
programming.

Besides inventory models, researchers use sampling
methods for stochastic programs, in particular the SAA
method. SAA is one of the most popular approxima-
tion methods for stochastic programs. It works by replacing
the true distribution with an empirical distribution obtained
from random samples. Several papers, e.g., Shapiro (2007)
and the references therein obtain results on convergence
and the number of samples required for the SAA method
to yield small relative errors with high probability.

1.4. Our Contributions

Our contributions in the present work are as follows:
1. To the best of our knowledge, the entire literature on

appointment (job, task) scheduling focuses on cases with
known duration distributions, almost in all cases indepen-
dent variables with continuous distributions from a param-
eterized family with known or estimated parameters. Our
analysis is nonparametric and does not assume indepen-
dent durations. It is also the first work to address the ASP
when the durations distributions are unknown, possibly cor-
related, and only sample information is available. The latter
assumption makes the model significantly more realistic.

2. Our solution approach to the sampling-ASP is based
on the well-known SAA method, which essentially replaces
the original problem with a problem defined with respect
to the empirical distribution induced by the samples. The
resulting SAA of the ASP is a stochastic nonlinear and non-
separable integer program. However, our approach is not
standard stochastic programming methodology. Based on a
significant extension of the work of Begen and Queyranne
(2011), we use the notion of discrete convexity to solve
the SAA in polynomial time for (possibly) correlated job
durations under very mild conditions.

3. In addition, we develop distribution-free bounds on
the number of samples required to guarantee that the opti-
mal SAA solution is arbitrarily close to the optimal solu-
tion that could be obtained if the duration distributions
are known. Our analysis approach is based on a novel,
complete characterization of the subdifferential of the ASP
objective function. We also present a new version of a
multidimensional bounding lemma in Levi et al. (2007)

that is needed in our context. This is significantly differ-
ent than the dynamic-programming based analysis of Levi
et al. (2007) for the multiperiod stochastic inventory control
problem. Unlike the ASP that is multivariable nonseperable
stochastic optimization, the latter problem could be decom-
posed into a sequence of univariable problems.

2. Preliminaries
We present the results on the convexity and subdifferential
of the ASP’s objective function (developed in Begen 2010)
used in the present sampling analysis. We start with addi-
tional notation needed (adapted from Begen and Queyranne
2011 and Begen 2010) on the ASP.

The random processing duration of job i is given by pi

and p = 4p11 p21 0 0 0 1 pn105. The term p̄i denotes the max-
imum possible value of processing duration pi. The max-
imum of these p̄i’s is p̄max = max4p̄11 0 0 0 1 p̄n5. The cost
coefficients are together represented as u= 4u11 u21 0 0 0 1 un5
and o= 4o11 o21 0 0 0 1 on5.

As in Begen and Queyranne (2011), we assume that all
cost coefficients and processing durations are nonnegative
and processing durations are integer valued with respect
to some given base duration unit. (For example, in the
surgery scheduling we can think of a five-minute inter-
val as the base unit.) We can restrict ourselves to integer
appointment schedules, without loss of optimality by the
appointment vector integrality theorem 5.1 of Begen and
Queyranne (2011).

Job 1 starts on time, i.e., A1 = 0, and there are n real
jobs. The 4n+ 15th job is a dummy job with a processing
duration of zero. We use the dummy job to compute the
overage or underage cost of the nth job. The start time and
completion time of job i are defined as Si = max8Ai1Ci−19
and Ci = Si + pi for 2 ¶ i ¶ n + 1, respectively. Because
job 1 starts on time we have S1 = A1 = 0 and C1 = p1.
Note that Si and Ci are random variables that depend on the
appointment vector A, and the random duration vector p.
The total cost due to job i completing at Ci is ui4Ai+1 −

Ci5
+ + oi4Ci −Ai+15

+, where 4x5+ = max401 x5 is the pos-
itive part of real number x. The total cost of appointment
vector A given processing duration vector p is defined as

F 4A � p5=

n
∑

i=1

4oi4Ci −Ai+15
+

+ ui4Ai+1 −Ci5
+50

The objective to be minimized is the expected total cost
F 4A5 = Ep6F 4A � p57, where the expectation is taken with
respect to random processing duration vector p.

Lemma 3.3.1 of Begen (2010) shows that F 4A � p5, for
any �i ∈�41 ¶ i¶ n5, can be rewritten as

F 4A � p5

=

n
∑

j=1

Fj4A � p5

=

n
∑

j=1

6�jLj4A � p5+�jTj4A � p5+�jMj4A � p571 (1)
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where Lj4A � p5 = 4Cj − Aj+15 (lateness of job j);
Tj4A � p5 = 4Cj − Aj+15

+ (its tardiness); Mj4A � p5 = max
8Cj1Aj+19 −

∑j
k=1 pk (total idle time of jobs 1121 0 0 0 1 j);

�i = 4oi −�i5; �i = 64ui +�i5− 4ui+1 +�i+157 (with �n =

un + �n); and the �j are numbers that are assumed to
satisfy Definition 1. Proposition 3.3.3 of Begen (2010)
shows F is convex under a mild monotonicity condition (�-
monotonicity) of cost coefficients. We recall the definition
of �-monotonicity, Definition 3.3.2 in Begen (2010).

Definition 1. The cost coefficients 4u1o5 are �-monotone
if there exist real numbers �i 41 ¶ i ¶ n5 such that 0 ¶
�i ¶ oi and ui +�i are nonincreasing in i.

The objective function is convex (under �-monotonicity)
but nonsmooth. (It has kinks.) Because of the nondifferen-
tiability of the objective function we work with its subdif-
ferential ¡F , the set of all subgradients. Using Minkowski
sums, subdifferential rules (Hiriart-Urruty and Lemarèchal
1993), and Equation (1), ¡F is characterized and expressed
component by component in a closed-form formula in
Begen (2010). Before we give the formula, we need to
introduce more concepts and notation. The subdifferential
of F is characterized by first obtaining subdifferentials
¡Lj4A � p5, ¡Tj4A � p5 and ¡Mj4A � p5 and then finding
the subdifferential of the corresponding expected values
¡Lj4A5, ¡Tj4A5, ¡Mj4A5. Finally, ¡F 4A5 is obtained as
the Minkowski sum of ¡Lj4A5, ¡Tj4A5 and ¡Mj4A5 over
all jobs. To find ¡Lj4A � p5 one needs to know which
jobs k 41 ¶ k ¶ j5 maximize 8Ak + Pkj9, where Pkj =
∑j

t=k pt . The set of such maximizers for job j is defined
as Ij = arg maxk¶j8Ak + Pkj9. Similarly, for ¡Tj4A � p5 and
¡Mj4A � p5 we define I

�
j = 8k ∈ Ij 2 Ak + Pkj�Aj+19, where

the relation � ∈ 8>1=9.
Furthermore, the characterizations of ¡Lj4A � p5,

¡Tj4A � p5 and ¡Mj4A � p5 include nonnegative vari-
ables representing convex combination weight terms.
Let 6j7 = 81121 0 0 0 1 j − 11 j9 and P∗46j75 denote all the
nonempty subsets of 6j7. Then for the job j the weight
variables Xj and their feasible set äj are defined as

Xj
=
(

4X�
ij4S5514X

M=

kj 4S∪8j+19552 �∈8L1T >1T =1M>91

1¶ i¶ j¶n+111¶k<j¶n+11S∈P∗46j751

i∈S1k∈S
)

3

äj
=

{

Xj¾02
∑

i∈S

X�
ij4S5=11

∑

i∈S

XT=

ij 4S5¶11

∑

k∈S∪8j+19

XM=

kj 4S∪8j+195=11∀�∈8L1T >1M>91

∀S∈P∗46j751∀i∈S1∀k∈S

}

0

All Xj vectors can be collected into a single vector X =

4Xj5j∈6n+17 and we can then express the feasible set ä of X:

ä = ×j∈6n+17ä
j
= 8X= 4Xj5j∈6n+172 X

j
∈äj

∀ j ∈ 6n+ 1790

Now with the definitions of X and ä, we can present
¡F 4A5 component by component for a particular X ∈ä,
i.e., each coordinate of the subgradient at point A defined
for a particular X ∈ ä. Let g4X1A5 be the element of
¡F 4A5 defined by the vector X. Then g4X1A5= 4g14X1A51
g24X1A51 0 0 0 1 gn+14X1A55, where gk4X1A5 is the kth com-
ponent of g4X1A5. Corollary 3.4.9 of Begen (2010) gives
an expression for the kth component of g4X1A5 (i.e.,
gk4X1A5) as

n
∑

j=k

�j

∑

S∈P∗46j75

Prob8Ij = S9XL
kj4S5−�k−1

·
∑

S∈P∗46k−175

Prob8Ik−1 = S9

+

n
∑

j=k

�j

∑

S∈P∗46j75

Prob8I>j = S9XT>
kj 4S5−�k−1

·
∑

S∈P∗46k−175

Prob8I>k−1 = S9

+

n
∑

j=k

�j

∑

S∈P∗46j75

Prob8I=

j = S9XT=

kj 4S5−�k−1

·
∑

S∈P∗46k−175

Prob8I=

k−1 = S9
∑

i∈S

XT=

ik−14S5

+

n
∑

j=k

�j

∑

S∈P∗46j75

Prob8I>j = S9XM>
kj 4S5−�k−1

·
∑

S∈P∗46k−175

Prob8I>k−1 = S9+

n
∑

j=k

�j

∑

S∈P∗46j75

Prob8I=

j = S9

·XM=

kj 4S ∪ 8j + 195+�k−1

·

(

1 −
∑

S∈P∗46k−175

Prob8I=

k−1 = S9

)

0 (2)

Remark 2. Note that
∑

S∈P∗46k−175 Prob8Ik−1 = S9 = 1. For
our analysis in this paper, we do not require the values of
Prob8Ij = S9, Prob8I>j = S9, and Prob8I=

j = S9 (for S ∈

P∗46j75 and j ∈ 6n+ 17). However these probabilities may
be needed for other research, and indeed these probabili-
ties are computed and used in Begen (2010) to compute
subgradients of F .

Remark 3. There may be a given due date D, an integer
satisfying 0 ¶D ¶∑n

i=1 p̄i for the end of processing after
which overtime is incurred, instead of letting the model
choose a planned makespan An+1. Proposition 3.4.11 of
Begen (2010) allows us to extend our results of the present
paper to the case in which there is a given due date D.

3. Sampling Approach
In this section, we relax the perfect information assumption
on the job durations distribution in Begen and Queyranne
(2011). Recall our assumption that there exists an underly-
ing (true) discrete joint distribution for the job durations but
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the distribution is not known. Instead independent samples
are available.

We first give a formal definition of the sampling-ASP.
In words, it is the problem of finding an optimal appoint-
ment schedule with respect to the empirical distribution
obtained from the available samples. Let N be the num-
ber of samples. Define pk = 4pk

11 p
k
21 0 0 0 1 p

k
n5 as the kth

observation in the N samples. We use “ˆ” to denote quanti-
ties obtained from samples. Let p̂= p̂4N 5 be the empirical
joint probability distribution obtained from N independent
observations of p, i.e., Prob8p̂= pk9= 1/N for 1 ¶ k¶N .
We denote a true optimal appointment vector with A∗, i.e.,
A∗ is a minimizer of Fp4A5 = Ep4F 4A � p55. (We use the
subscript p to emphasize the fact that the quantities are
obtained with respect to the true distribution p.) Similarly,
let Â = Â4N 5 be a minimizer of Fp̂4A5 = Ep̂4F 4A � p̂55.
(Again we use the subscript p̂ to emphasize the fact that
the quantities are obtained with respect to the sampling
distribution p̂. We will omit the subscripts when the mean-
ing is clear from the content.) Then the sampling-ASP is
minimizing Fp̂4A5, i.e., finding a Â4N 5 for a given sample
size N . We now present an overview of our sampling-based
approach. Let � be the accuracy level and 1 − � the con-
fidence level. We solve the sampling-ASP and determine
the number N =N4�1�1u1o5 of samples required such that
for any 0 < � ¶ 1 and 0 < � < 1 we have Fp4

ˆA4N55 ¶
41+ �5Fp4A

∗5 with probability at least 1−�. For a subgra-
dient defined by vector X ∈ä at point A, we denote its kth
component as gk4X1A5p for Fp4 · 5 and gk4X1A5p̂ for Fp̂4 · 5.
The formulas for gk4X1 05p and gk4X1 05p̂ are identical to (2)
except that we now have Probp8 · 9 terms in gk4X1 05p and
Probp̂8 · 9 terms in gk4X1 05p̂.

We start our analysis by proving in Theorem 4 that we
can minimize Fp̂4 · 5 in polynomial time. Then, with an
application of Hoeffding’s inequality (Hoeffding 1963), we
establish a connection between the probabilities of a given
event with respect to p and p̂ as a function of sample size
N for a given accuracy level �′ (absolute difference of the
probabilities with respect to p and p̂) and a confidence level
1 − �′. After that, we provide a similar result for a family
of events F. Then we use the subdifferential characteri-
zation to show the existence of a subgradient g ∈ ¡Fp4Â5
such that �gk� < �′K ′ with probability at least 1 − �F��′,
where �F� = �F�4n5 and K ′ = K ′4n1u1o5 are some con-
stants. After that we prove that if there exists g ∈ ¡Fp4Â5
such that �gk�< ��/34n+ 15n, where

� = min8u11 u21 0 0 0 1 un1 o11 o21 0 0 0 1 on9

for all 1 ¶ k ¶ n + 1 then Fp4Â5 ¶ 41 + �5Fp4A
∗5. This

is achieved with an application of Jensen’s inequality
and a new version of Lemma 5.1 of Levi et al. (2007)
(Lemma 12). We conclude by stating our main result that
determines the number of samples required to achieve a
41 + �5 approximation with probability at least 1 − �.

Theorem 4 (Polynomial time algorithm). If the cost
vectors 4u1o5 are �-monotone and the processing dura-
tions are integer then Fp̂ can be minimized in O4n8N
log4�p̄max/2�55 time.

Polynomial time algorithm Theorem 4 shows that for a
given N -size sample of job durations we can solve the cor-
responding sampling-ASP efficiently. (One may also solve
the sampling-ASP with nonsmooth convex optimization
methods by using the subdifferential characterization as in
Begen 2010.) The remaining task is, for a given accuracy
level � and confidence level 1 − �, to determine a sample
size N such that the sampling-ASP optimal solution will
have an expected cost no more than 41 + �5 times the opti-
mal expected cost with probability at least 1 − �.

Let O be any event depending on the processing times
p = 4p11 p21 0 0 0 1 pn5, that is, O = O4p11 p21 0 0 0 1 pn5 =

O4p5. Let Probp8O4p59 denote the true probability of O.
Let Probp̂8O9 denote an estimate of Probp8O4p59 when true
distribution of p is not known, and the empirical probabil-
ity distribution p̂, based on N independent samples, is used
in the estimation. We define an indicator function as

18O4pk59=







1 if event O occurs with realization pk

0 otherwise.

Then 18O4pk59 is Bernoulli distributed with parameter
Probp8O4p59. We define our estimate Probp̂8O4p59 as

Probp̂8O4p59=
1
N

N
∑

k=1

18O4pk590

Remark 5. Note that N Probp̂8O4p59 is the sum of N
independent Bernoulli random variables with parameter
Probp8O4p59, therefore N Probp̂8O4p59 is binomially dis-
tributed with parameters Probp8O4p59 and N .

We use Hoeffding’s inequality to obtain the number of
samples N required such that

Prob8�Probp8O4p59− Probp̂8O4p59�¶ �′9 > 1 − �′

for any given accuracy level �′ > 0 and confidence level
0 < �′ < 1. A direct application of Hoeffding’s inequality
for Bernoulli random variables (Theorem 4.5 in Wasserman
2004) yields N > 41/2541/4�′525 ln42/�′50 Using union
bounds we obtain a similar result for a family of events.

Lemma 6. Let F be a family of (possibly dependent)
events, F = 8O11O21 0 0 0 1O�F�−11O9, where each Ok ∈F
depends on the processing times p = 4p11 p21 0 0 0 1 pn5.
Let 0 < �′1 �′ < 1. If N > 41/2541/4�′525 ln42/�′5 then
Prob8�Probp8Ok4p59 − Probp̂8Ok4p59� ¶ �′ ∀k = 1121 0 0 0 1
�F�9 > 1 − �F��′0

Recall that Â is an optimal appointment vector for Fp̂.
Therefore there exists X̂ ∈ ä such that gk4X̂1 Â5p̂ = 0 for
all 1 ¶ k ¶ n + 1. We show in Lemma 7 that if we
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take enough samples then �gk4X1 Â5p − gk4X1 Â5p̂� will be
small with high probability. This implies that there exists
a small g ∈ ¡Fp4Â5. Let �max be max8�11 0 0 0 1�n9 for � ∈

8o1u1�1�1�9.

Lemma 7. If N > 41/2541/4�′525 ln42/�′5 then �gk4X̂1 Â5p�
< �′K ′ for all k = 11 0 0 0 1 n + 1 with probability at least
1 − �F��′, where X̂ ∈ ä, g4X̂1 Â5p̂ = 0 �F� = 5n2 + 5 and
K ′ = n414omax + 6umax5.

Remark 8. If ui = u for all i = 1121 0001 n then with K ′ =

n46omax + 2u5+ 4u, we have

�gk4X̂1 Â5p − gk4X̂1 Â5p̂�

¶ �′4n46omax + 2u5+ 4u541 ¶ k¶ n+ 15

with probability at least 1 − �F��′, where �F� = 5n2 + 5.

The remaining task is to establish Fp4Â5¶ 41+�5Fp4A
∗5

when there exists a sufficiently small subgradient g ∈

¡Fp4Â5. We show this result in Lemma 13. But before
doing so we need two more results and a definition.

Lemma 9. Let p̃i = E6pi7, p̃ = 4p̃11 p̃21 0 0 0 1 p̃n5, C̃1 =

p̃1, C̃i = max4C̃i−11Ai5 + p̃i, and f̃ 4A5 = �4
∑n

i=164C̃i −

Ai+15
+ + 4Ai+1 − C̃i5

+75. If cost coefficients 4u1o5 are
�-monotone then Ã = 401 p̃11 p̃1 + p̃21 0 0 0 1

∑n
j=1 p̃j5 ∈

arg minA f̃ 4A5 and Fp4A5 ¾ f̃ 4A5 ¾ 4�/n5�A − Ã�1 for
all A.

Remark 10. The following example with n= 2 jobs shows
that this lower bound is tight, that is we may have Fp4A5=

4�/n5�A− Ã�1. Let processing times p = 41145 be deter-
ministic, u1 = u2 = o1 = o2 = 1 (therefore � = 1). Then
Ã = 4011155. For A = 4014185, we have F 4A5 = 3 =

41/25
∑n

i=1 �Ai − Ãi�.

Definition 11 (Definition 3.3 of Levi et al. 2007). Let
f 2 �m 7→ � be convex. A point y is an �-point if there
exists a subgradient g ∈ ¡f 4y5 such that �g�1 ¶ �.

Lemma 12 (A New Version of Lemma 5.1 of Levi et al.
2007). Let f 2 �m 7→� be convex, finite with a global min-
imizer y∗. Assume that there exists f̄ such that f ¾ f̄ =

��y − ỹ�1 for some � > 0 and ỹ ∈ �m. If ŷ is an �-point
for �= ��/3 then f 4ŷ5¶ 41 + �5f 4y∗5, where � ∈ 60117.

The last step we need before our main result is to prove
that for a suitably chosen Â = Â4N 5, where N = N4�1�1
u1o5, we have Fp4Â5 ¶ 41 + �5Fp4A

∗5 for any 0 < � ¶ 1.
We derive the following result from Lemma 12.

Lemma 13. Let 0 < � ¶ 1. If there exists g ∈ ¡Fp4Â5 such
that �gk� < ��/434n + 15n5 for all 1 ¶ k ¶ n + 1 then
Fp4Â5¶ 41 + �5Fp4A

∗5 .

Combining Lemmata 6, 7, and 13 yields our main result
for the sampling-based approach.

Theorem 14. Let 0 < � ¶ 1 (accuracy level) and 0 <
1 − � < 1 (confidence level) be given. If N > 440541/�52

4n24n + 15414omax + 6umax5/�5
2 ln4245n2 + 55/�55 then

Fp4Â5¶ 41 + �5Fp4A
∗5 with probability at least 1 − �.

Remark 15. In the case of uniform underage cost coef-
ficients, i.e., ui = u for all i the bound in Theo-
rem 14, 440541/�524n24n + 15446omax + 2u5 + 4u5/�52

ln4245n2 + 55/�5, is similar but has a slightly higher poly-
nomial with respect to the number of jobs n compared to the
bound obtained for the multiperiod newsvendor problem in
Levi et al. (2007), with respect to the number of periods T .
This is expected because in the ASP one needs to make all
the decisions, i.e., determine the planned start times of all
jobs, at once (before any processing starts), whereas in the
inventory problem one decides sequentially at each period.

4. Conclusion
We considered the ASP with discrete random durations,
studied by Begen and Queyranne (2011), but without
assuming any (prior) knowledge about the probability dis-
tribution of job durations. We assume that there is an under-
lying (true) joint discrete distribution for the job durations,
and only independent samples are available, e.g., daily
historical observations of surgery durations. Job durations
need not be independent but samples are. We developed
a sampling-based approach to solve the sampling problem
and determine the number of independent samples required
to obtain a provably near-optimal solution with high proba-
bility, i.e., the cost of the sampling-based optimal schedule
is with high probability no more than 41+�5 times the cost
of an optimal schedule if the true distribution were known.
The bound on the samples is polynomial in the number n of
jobs, accuracy level �, confidence level 1 − �, and (under-
age and overage) cost coefficients u and o, and it does not
depend on the underlying distribution.
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