
A branch and bound based heuristic for makespan

minimization of washing operations in hospital

sterilization services

Onur Ozturk, Mehmet A. Begen∗, Gregory S. Zaric

Ivey Business School, Western University, 1255 Western Road London Ontario, Canada

N6G 0N1

Abstract

In this paper, we address the problem of parallel batching of jobs on identical
machines to minimize makespan. The problem is motivated from the washing
step of hospital sterilization services where jobs have different sizes, different
release dates and equal processing times. Machines can process more than
one job at the same time as long as the total size of jobs in a batch does not
exceed the machine capacity. We present a branch and bound based heuristic
method and compare it to a linear model and two other heuristics from the
literature. Computational experiments show that our method can find high
quality solutions within short computation time.

Keywords: OR in health services, parallel batch scheduling, makespan,
branch and bound heuristic

1. Introduction

Sterilization services are hospital departments where medical devices (MDs)
are sterilized. There are two types of MDs: single use MDs and reusable MDs.
Reusable MDs (RMDs) are used in surgeries, sterilized, and then reused in
other surgeries. We consider the sterilization process of RMDs in this study.

∗corresponding author (tel: +1 519 661 4146)
Email addresses: oozturk@uwo.ca (Onur Ozturk), mbegen@ivey.uwo.ca (Mehmet

A. Begen), gzaric@ivey.uwo.ca (Gregory S. Zaric)

Preprint submitted to European Journal of Operational Research April 29, 2014

All RMDs used in a surgery constitute the RMD set of the surgery. After
a surgery, all RMDs used are sent to the sterilization service. Due to surgery
characteristics and surgeons needs, RMD sets may contain different numbers
and types of instruments. Hence, they may have different sizes (or volumes).
Moreover, they are sent to the sterilization service at different times within
a day since each surgery may have a different starting and ending time.

A typical sterilization service is composed of the following steps (Di Mas-
colo and Gouin (2013)): pre-disinfection, washing, packing and sterilization.
Pre-disinfection is a manual step during which RMDs are submerged in a
chemical substance. Then, they are washed in an automatic washer. After-
wards, they are packed and sterilized with steam in autoclaves.

We are interested in the washing step which is a bottleneck for steril-
ization services. More than one RMD set can be washed in an automatic
washer at the same as long as the machine capacity is not exceeded. All
RMD sets washed at the same time constitute a single batch. Depending
on the organization between operating theatres and the sterilization service,
RMD arrivals can be known in advance. For instance, RMD arrivals can
be known accurately for operating theatres where ambulatory surgeries take
place. Another example is sterilization services that accept RMD arrivals
only at specific times within a day. However, although RMD arrival times
and sizes are known in advance, the decision of how to load the machines,
i.e., how to batch RMD sets and launch washing cycles is not trivial. We
model this problem using a parallel batch scheduling approach. Jobs may
have different sizes (or volumes), different release dates and equal processing
times. All jobs processed at the same time constitute a single batch which is
processed on a single machine. The processing time of batches are the same
and equal to the processing time of jobs. Hence, our problem becomes a par-
allel batching problem where RMD sets are treated as jobs having different
sizes, different release dates and equal processing times.

The remainder of this paper is organized as follows. In section 2, we
provide a literature review about batch scheduling problems and summarize
the contributions of this paper. In section 3, we give a formal description
of our problem. Section 4 is dedicated to the solution methodology. Section
5 presents computational tests. Finally, we conclude the study and propose
some further research directions.

2

2. Literature review

2.1. Batch scheduling

We review only batch scheduling literature regarding jobs with different
sizes. For more information about batch scheduling, we refer the reader to
Potts and Kovalyov (2000) and Mathirajan and Sivakumar (2006). There are
two types of batch scheduling: serial and parallel. In serial batch scheduling,
jobs in the same batch are processed sequentially on one or more machines.
The processing of a batch is completed when the last job of the batch is
processed. A typical example is confection workshops where many types of
clothes are sewed. For instance, sewing of t-shirts constitutes a batch while
shirts, trousers, etc. may constitute a second batch. In parallel batching
however, all jobs are processed simultaneously in the same machine. In this
paper, we study a parallel batch scheduling problem.

2.1.1. Exact methods

To the best of our knowledge, exact methods for parallel batching with
jobs having different processing times are only applied to the case when all
jobs are available at the same time. Uzsoy (1994) proposes a branch and
bound algorithm to minimize the sum of job completion times on a single
machine in which jobs have different processing times and sizes. For the
same problem but with the objective of minimizing makespan, Dupont and
Dhaenens-Flipo (2002) develop a branch and bound algorithm. Later on,
Parsa et al. (2010) propose a branch and price method for the same problem.
They report that their method is more efficient in terms of solution time than
the one proposed by Dupont and Dhaenens-Flipo (2002). Malapert et al.
(2012) study the minimization of maximum lateness on a single machine for
which they propose a constraint programming approach. Other than these
studies, there are many other studies where the case of unit size jobs is
tackled. For instance, Yuan et al. (2004) study the case where jobs have unit
sizes but different processing times and release dates in the presence of job
families. They provide dynamic programming algorithms when the number
of jobs, number of job families and number of release dates are bounded. For
the general case, they propose a 2-approximation algorithm. Cheng et al.
(2005) propose polynomial time dynamic programming algorithms for a set
of regular objective functions when jobs have unit sizes, unit processing times,
release dates and precedence constraints in the presence of a single machine.

3

Regardless of processing times, all problems considering different job sizes
are in the class of NP-hard. The additional difficulty in our problem is due
to different release dates.

2.1.2. Heuristic and approximation methods

Most studies on batch scheduling with different job sizes focus on heuris-
tic, meta-heuristic methods and approximation algorithms. Zhang et al.
(2001) consider the case where jobs are available at the same time while
having different sizes and processing times. They develop an approximation
algorithm with a worst case performance ratio equal to 7/4 for makespan
minimization on a single machine. Cheng et al. (2012) propose an approxi-
mation algorithm with a worst case ratio of 2 and (8/3 - 2/3*m) for makespan
and total completion time criteria, respectively, in the presence of m identical
machines. Li et al. (2005) extend the problem studied in Zhang et al. (2001)
by considering job release dates. They present a 2+ε approximation algo-
rithm which is derived from a polynomial time approximation scheme that
they propose for the case where jobs have unit sizes. Lu et al. (2010) use a
similar approach and provide a 2+ε approximation algorithm for bi-objective
minimization of makespan and penalization of unscheduled jobs. Liu et al.
(2014) present heuristics and approximation algorithms for makespan min-
imization in the presence of unit size jobs with release dates and different
processing times. Their work is later generalized to the case of different job
sizes by Li (2012). Chou (2007) studies the same problem as in Li et al. (2005)
and proposes a genetic algorithm using a dynamic programming procedure
to find the makespan of a given chromosome.

Because in our problem we have release dates, different job sizes and par-
allel machines, the articles cited in this paragraph are more related to our
problem. Li (2012) presents the only approximation algorithm with a worst
case performance ratio equal to 2+ε when jobs have different sizes, different
processing times, release dates. There are, however, mostly heuristic/meta-
heuristic methods in the literature for the batch scheduling problem studied
by Li (2012). For the same problem, Chung et al. (2009) propose a mixed in-
teger linear programming model (MILP) and heuristics. Many other authors
use the heuristics of Chung et al. (2009) for benchmarking. Wang and Chou
(2010), Damodaran and Velez Gallego (2010) and Damodaran et al. (2011)
consider the same problem for which they develop a genetic algorithm, a
greedy randomized adaptive search procedure (GRASP) meta-heuristic and
a constructive heuristic, respectively. All report that their approaches out-

4

perform the heuristics proposed in Chung et al. (2009). In another work,
Damodaran and Velez-Gallego (2012) propose a simulated annealing algo-
rithm which is able compete with the GRASP approach. Ozturk et al. (2012)
develop a MILP model that runs faster than that proposed by Chung et al.
(2009) for the case with equal job processing times. They also treat some
special cases and provide optimal greedy algorithms. Recently, Pearn et al.
(2013) enlarge the broad of the problem considering job families, due dates
and set-up times between the processing of batches from different families.

2.2. Contribution of this paper

The method we propose exploits the structural properties of the problem
under study. It is based on constructing a search tree where each node rep-
resents a job release date or the starting time of batch processing thanks to
equal job processing time property. Numerical tests show that our branch
bound based heuristic method (B&BH) can solve problem instances contain-
ing up to 40 jobs in short computational time and can solve larger instances
in reasonable time. MILP model of Ozturk et al. (2012) can find the opti-
mal solution for small and medium size instances but it requires too much
computational time. Regarding other methods from the literature, bench-
marking results show that our method’s solution quality is higher than two
others heuristics from the literature. Our method is applicable in sterilization
services since it can quickly solve real size instances.

3. Problem description, notation and complexity

We begin with definitions and notation:

• There are m identical parallel machines with a limited capacity B.

• There are n jobs to be processed. A job is a task that is characterized
by a release date, rj, a size, wj, and a processing time, p.

• The size of a job cannot be greater than the machine capacity.

• Since washing times are the same for all RMD sets, job processing times
are the same for all jobs.

• A batch is composed of jobs processed at the same time on the same
machine. Several jobs can be batched together, complying with the
machine capacity constraint.

5

• Once the processing of a batch is started, it cannot be interrupted (i.e.
pre-emption is not allowed). Jobs cannot be split into multiple batches.

• The objective is to minimize makespan.

Using the Graham’s notation (Graham et al. (1979)), we have a P |p −
batch, rj, pj = p, wj, B|Cmax scheduling problem. In this notation, P stands
for identical machines. p − batch indicates that we have a parallel batching
problem where all jobs in the same batch are processed at the same time. rj
and wj stands for job release dates and sizes, respectively. pj = p indicates
that all job processing times are equal to p. B is the machine capacity.
Finally, Cmax is the objective function.

It is straightforward to show that this problem is NP-hard. Consider the
special case where all jobs are simultaneously available at instant 0 (1|p −
batch, rj = 0, pj = p, wj, B|Cmax). Then, minimizing makespan is equivalent
to minimizing the number of batches, which is a bin-packing problem. Since
bin-packing is strongly NP-hard, our problem is also strongly NP-hard.

4. Solution methodology

In this section, we present first a lower bound algorithm and then a branch
and bound based heuristic for the problem of makespan minimization. The
lower bound algorithm will be used for pruning in the branch and bound
method. Throughout this section, without loss of generality, we suppose
that jobs are sorted in non-decreasing order of release dates.

4.1. Lower bound: LB

The idea of the lower bound algorithm consists in splitting jobs in size
and creating batches with consecutive jobs. When a job, say job j, is split in
size, two new jobs j1 and j2 are obtained such that sum of their sizes is equal
to the size of job j. Moreover, release dates of jobs j1 and j2 are equal to the
release date of job j. Obviously, a lower bound on the number of batches is
also obtained when jobs are allowed to be split in size. If after assigning a
job to a batch, the number of batches to be created with the remaining jobs
decreases, then this batch can be processed immediately. Because there is at
least a batch whose processing starting time is equal to the release date, rj, of
the last job, j, it contains, and a minimum number of batches is created after
job j with the remaining jobs, therefore a lower bound on Cmax is obtained.

6

The lower bound algorithm takes the following steps:
1- Calculate a lower bound on the number of batches by allowing jobs to be
split. Select the first unbatched job (i.e., the unbatched job having the small-
est release date), put it in a batch, then recalculate the minimum number of
batches with the remaining unbatched jobs.
2- If the number of batches to create decreases, close the batch.
3- In case that job does not completely enter the open batch, split the job,
put its first part to the batch in order to have a 100% full batch and close
the batch. Treat the second part of the job as a new job having the same
release date.
4- Execute the same steps with the remaining jobs.

Here closing a batch means that the batch is ready for processing and
no other job is put in that batch. The notation used and the lower bound
algorithm can be found in the appendix.

The LB algorithm finds the minimum number of batches by finding the
sum of all unbatched job sizes and dividing this sum by the machine capacity.
Then, this value (if fractional) is rounded up to the smallest integer. To
illustrate with a numerical example, Figure 1 shows the release dates and
sizes of 4 jobs. Let p be 60 and consider two machines whose capacities are
equal to 12.

wj

10 20 30 40

9

rj

7

4

Figure 1: Numerical example

The minimum number of batches is equal to d(4 + 7 + 9 + 4)/12e = 2.
When the minimum number of batches is recalculated after placing the first
job in a batch, we obtain d(7 + 9 + 4)/12e = 2. Thus, the first batch is not

7

closed yet. The second job is also put to batch 1. The minimum number of
batches with the remaining jobs is equal to d(9 + 4)/12e = 2. Batch 1 stays
open. The third job is put in batch 1 but because of the capacity limitation,
it cannot completely be placed in batch 1. Thus, job 3 is split such that
the size of the first split part is 1 and the second part’s size is 8. The first
part of job 3 is put in batch 1. The second part of job 3 is treated as new
job having the same release date as job 3. Finally, the same procedure is
applied to remaining jobs. Once all jobs are assigned to a batch, batch ready
times are set equal to the greatest job release date they contain. Then, they
are assigned consecutively on machines. The solution is shown on a Gantt
diagram in Figure 2.

Job 1, Job 2, Job 3split

Job 3split , Job 4

machines

30 40 90 100 time

2
1

Figure 2: Solution of the numerical example with LB algorithm

4.2. Branch and Bound based heuristic algorithm: B&BH

Because jobs have equal processing times, assignment of batches to ma-
chines is an easy task in the presence of identical machines. When a batch
is to be processed, it is assigned to the machine having the smallest idle
time. Here, smallest idle time (or smallest machine idle time) indicates the
smallest instant when a machine becomes available to process new jobs. For
instance consider the solution given in Figure 2. There are two machines such
that machine M1 terminates the processing of some jobs at instant 90 and
machine M2 terminates at instant 100. Then the smallest machine time for
this example is instant 90 after which machine M1 is available to process new
jobs. Because jobs have equal processing times, we have a limited number
of starting times for the processing of batches due to equal processing times
(Baptiste (2000)). Let π be the set of all possible starting times for batches.
Then, π = {ri + k ∗ p|i ∈ {1, ..., n} and k ∈ {0, ..., n}}, |π| = O(n2). In
our branch and bound tree, each node is characterized by an instant, say t,
which is an element of set π, and by two sets of jobs representing present but
unprocessed jobs at t and jobs which have not been released by t, respectively.

8

4.2.1. Enumerating batch processing instants

The algorithm explores all possible instants by creating a binary tree.
Left branch of the tree represents delaying the processing of jobs until the
release of next job. Right branch represents the processing of a batch (we
talk about the batch creation procedure in the next section).

Left branching
Consider an instant t at which some jobs are available. A node, say v,
in the search tree represents instant t as well as available (or released) but
unprocessed and unavailable (or unreleased) jobs at t. Let us denote released
but unprocessed jobs by JobsA and unreleased jobs by JobsUA. Left branch
leads to a child node, say vl, by delaying the processing of jobs in JobsA until
the release of first job in JobsUA. Job jfirst denoting the first job in JobsUA, vl
is characterized by an instant tl such that tl ← rfirst where rfirst is the release
date of job jfirst, and sets JobsUAl

and JobsAl
such that JobsAl

← JobsA∪
job(s) j and JobsUAl

← JobsUA - job(s) j for rj = rfirst. For instance, let
JobsA = {j1} available at t1 and JobsUA = {j2, j3} available at t2 such
that t1 < t2 and r2 = r3 = t2. Then, tl = t2, JobsAl

= {j1, j2, j3} and
JobsUAl

= {} .

Right branching
Regarding the right branch, a batch is created with jobs present in set JobsA.
Let jobsbatch represent the jobs put in the batch (we explain the batch creation
procedure in section 4.2.4). After right branching, i.e., after processing jobs
jobsbatch, JobsA is updated as follows: JobsA ← JobsA − jobsbatch. For the
processing starting time of the batch, batch ready time and the smallest
machine idle time are taken into account. Instant rbatch representing the
ready time of the batch and dispmin the minimum machine idle time, the
processing starting time of batch is max(rbatch, dispmin).

Exploring new instants after right branching
The idea of exploring new instants after right branching is based on finding
the smallest instant ts which will allow processing jobs. After right branching,
if there are still unprocessed jobs in JobsA, then the next interesting instant
is the smallest machine idle time, i.e., ts = dispmin. If, however, JobsA
becomes empty after right branching, then the next interesting instant is the
maximum between the smallest machine idle time and the first job release
date rfirst in JobsUA, i.e., ts = max(dispmin, rfirst). Once ts is determined,
left and right branchings reoccur to explore new instants.

9

Updating job lists after right branching

Let tr be the next instant to be explored after right branching at t. JobsA is
updated by erasing jobs processed at t. Since new jobs may be released at
instant tr, JobsA must contain these jobs. jobstr denoting the job(s) released
earlier or at tr but not processed by tr, job lists are updated as follows:
JobsA ← JobsA ∪ jobstr and JobsUA ← JobsUA − jobstr .

4.2.2. Branching scheme

A natural branching scheme would be depth first search by selecting al-
ways left branches first. However, this type of search may increase the solu-
tion time and space since the first right branching is done when all jobs are
available, i.e., at the final node discovered by left branching. Instead, we de-
velop a preprocessing method that calculates the lower bound value for each
child node. More precisely, before any child node is visited, we calculate the
value of lower bound for each child node reached by left and right branches.
Then, child node having the smaller lower bound value is prioritized. In case
lower bound values are equal, tie is broken by choosing the left branch.

4.2.3. Cuts

We add cuts to improve the solution time of the algorithm. The first cut
is done using the lower bound algorithm.

Proposition 1. If at any node, the lower bound value is greater than
the best makespan value obtained so far, that node is pruned.

Proposition 2. If a node represents an instant greater than rn (release
date of the last job), then left branching is no longer necessary.

Proof. Since rn is the last job release date, there is no other job released
after rn. Then, unprocessed jobs by rn (or at an instant greater than rn) can
be processed without being delayed, i.e., without left branching.�

Proposition 3. Let t be an instant associated with node v at which
some jobs are available for processing. If t is smaller than rn and if the next
job release date is greater or equal to t + p, then there is no left branching
at v.

Proof. Since the processing time of a batch is p, delaying the jobs available
at t, until t+p results in unnecessary waiting and hence, solely right branching

10

at node v is sufficient. A batch is thus created with jobs available at v. �

4.2.4. Batch creation

We use a suboptimal procedure to create batches. The idea is to maximize
the used batch capacity which reduces the batch creation step to a knapsack
problem. Note that a similar approach is presented as an approximation
algorithm in the bin-packing literature. While there are jobs to be put in
a bin, the algorithm solves a knapsack problem until there is no job left.
Gupta and Ho (1999) test this method on randomly generated instances and
report that it performs much better than other heuristic methods in the bin
packing literature. They also show that the algorithm guarantees the optimal
solution if the sum of item sizes is at most equal to twice of bin capacity.
Caprara and Pferschy (2004) show that the worst case performance ratio of
the method is bounded by 4/3 + ln4/3 ≈ 1.6210. A detailed performance
analysis of this approach and other bin-packing algorithms can be found in
Vanderbeck (1999).

Although there is a tight relation between our problem and bin packing
problem, we should point out that minimizing number of batches does not
guarantee the optimality of makespan for our problem. Consider the fol-
lowing example for which job sizes and release dates are given in Table 1.
Consider two machines with capacity B. Let p be the processing time and
εj a number smaller than B/2 ∀j.

Table 1: Bin packing vs. Scheduling

Job 1 2 3 4 5 6

Release date p 2p 3p 4p 4p 4p
Size B/2 + ε1 B/2 + ε2 B/2 + ε3 B/2− ε1 B/2− ε2 B/2− ε3

If the objective is minimizing the number of batches, 3 full batches can be
created and the processing of batches starts at 4p. Makespan value is thus
6p. However, it is easy to see that the optimal makespan is 5p which can be
achieved by creating 5 batches. Figure 3 shows both solutions. Hence, the
structure of our problem allows to have optimal makespan without minimiz-
ing the number of batches. However, maximizing the used batch capacity is
a natural approach when a batch is created. We strengthen this approach
by applying a dominance criterion proposed by Martello and Toth (1990).

Dominance criterion: (Martello and Toth (1990)) Let f1 and f2 be two
feasible partitions of jobs such that

∑
j∈f1 vj =

∑
j∈f2 vj ≤ Cap. f1

dominates f2 if the cardinality of f1 is smaller than the cardinality of f2.

11

Jobs 1, 4

machines

4p 5p 6p

2
1

Jobs 2, 5

Jobs 3, 6 Job 1

machines

p 2p 3p 4p 5p

2
1

Job 2 Job 3 Jobs 4, 5

Job 6

time time

Solution with 3 batches Solution with 5 batches

Figure 3: Two solutions for the example presented in Table 1

The dominance criterion above prioritizes big size jobs for batch creation.
This way, if there are other big size jobs released later and if these jobs cannot
be batched with earlier big size jobs, the idea of the dominance criterion
is to leave smaller size jobs to later instants. For that purpose, a binary
search procedure is used to create a single batch. If there are many batch
configurations, binary search procedure chooses the one containing the least
number of jobs. This procedure, named (createBatch(.)), is presented in the
appendix.

4.2.5. Initialization: Upper bound heuristic

We use a heuristic to find an upper value on makespan at the root node.
This heuristic creates batches with consecutive jobs. If a job cannot be placed
in a batch because of capacity limitations, batch is closed and assigned to
the machine having the smallest idle time.

4.2.6. Numerical example

Consider the example given in Figure 1. Figure 4 shows the search tree
for the example. Numbers in nodes represent the order of visiting nodes
in the search tree. Lower bound values associated with each child node is
represented next to branches. We explain below the solution procedure step
by step.

Solution steps for the numerical example

Heuristic finds an upper bound value equal to 140. The initial lower bound
is 100.
Node 1 (root node): Left branch represents delaying the processing of job

12

1

52

LB
root

= 100

UB
root

= 140

3

4

6

7

8x

x x

x

100 130

100

100

160

150

140 130130

130

130

C
max

* = 130 < 140

x 130

Figure 4: The search tree for the example

1 until the release of second job which provides a lower bound value smaller
than processing job 1 immediately upon its release. Thus, left branching is
prioritized.
Nodes 2, 3 and 4: Delaying the processing of jobs 1,2 and 3 until the
release of job 4 gives a lower bound value smaller than right branching at
nodes 2 and 3. Thus, left child nodes are visited first. At node 4, all jobs are
available. Right branching at node 4 represents the processing of jobs 1 and
2 in the same batch at instant 40. But the lower bound value of the child
node is 160. This branch is thus pruned.
Backtracking at Node 3: Left branch at node 3 processes jobs 1 and 2 in
the same batch at instant 30. But with the remaining jobs, at least two other
batches are created and thus the lower bound associated with that branch
becomes 150. It is thus pruned.
Backtracking at Node 2: Left branch at node 2 processes jobs 1 and 2 in
the same batch at instant 20. Since the lower bound associated with the right
child node is equal to 140, i.e. current best makespan value, right branch is
pruned.
Backtracking at Node 1 and right branching: Job 1 is processed on
machine 1 at instant 10.
Node 5: Left branch has a lower bound value equal to that of right branch
at node 5. Job 2, which is available at node 5, is thus delayed.

13

Node 6: Left and right branches has equal lower bound value. Tie is broken
by choosing left branch.
Node 7: All unprocessed jobs are available at node 7. Job 1 has already
been processed. Machine 1 is idle at 70 and machine two is idle at 0. Jobs 2
and 4 are put is the same batch and processed at instant 40 on machine 2.
Node 8: Finally, job 3 is processed on machine 1 which gives a makespan
value equal to 130 (130 becomes the new best Cmax value).
Backtracking at nodes 6 and 5: The lower bound values associated with
the right branches of nodes 6 and 5 are greater or equal to 130. These
branches are thus pruned.

Figure 5 shows the Gantt Diagram corresponding to the optimal solution.

Job 1

Job 2, Job 4

machines

10 40 70 100 130 time

2
1

Job 3

Figure 5: Solution of the numerical example with branch and bound

Pseudo-code of the algorithm is given in appendix.

4.2.7. Optimally solvable cases

Ikura and Gimple (1986) studied a special case of our problem where jobs
have unit sizes and presented a polynomial time algorithm. It is straight-
forward to see that B&BH guarantees the optimal solution if all jobs have
the same size in a problem instance since batch creation becomes easy. We
now present another special case that B&BH can guarantee optimal solution.
Suppose for any time interval of length of p/m, sum of job sizes is smaller
or equal to machine capacity for jobs whose release dates are in that time
interval. We first show that in this special case makespan value is equal to
rn + p and then argue that B&BH finds optimal solution.

Property 1. Suppose for any a time interval [rj, rj + p/m] the sum of
job sizes is smaller or equal to the machine capacity, i.e.

∑
wk ≤ B ∀k such

that rk ∈ [rj, rj + p/m] ∀j. Then, the optimum makespan value is equal to
rn + p where rn is the last job release date.

Proof. Let K be an integer such that r1 ∈ [rn−K∗p/m, rn−(K−1)∗p/m].
Then, we have K intervals of length p/m which allows us to create K batches.

14

Considering the first batch is processed at instant rn−(K−1)∗p/m, a second
batch can be created and processed at rn−(K−2)∗p/m on machine 2. Then,
the second batch on machine 1 is created with jobs whose release dates are
in [rn − (K −m) ∗ p/m, rn − (K − (m+ 1)) ∗ p/m] and processed at most at
instant rn − (K − (m + 1)) ∗ p/m. Observe that rn − (K − (m + 1)) ∗ p/m
is equal to the processing ending time of the first batch on machine 1, i.e.
rn − (K − 1) ∗ p/m + p. Similarly, jobs having release dates in the interval
[rn − p/m, rn] are processed at rn which concludes the proof. �

In this special case, since B&BH explores instants at which only a single
batch can be created, batch creation is no longer a difficult task and thus
B&BH gives the optimal makespan thanks to exploring every possible instant
in the problem.

5. Computational experiments

In this section, we test two types of problem instances which are inspired
from the hospital sterilization context. Algorithms are coded in Java and
implemented on an Intel Core i5 2.50 GHz machine. Solution time limit is
set to one hour. We use the genetic algorithm of Wang and Chou (2010)
noted GALit, approximation algorithm of Li (2012) noted AALit and the
MILP model of Ozturk et al. (2012) noted MILPLit for benchmarking.

MILPLit can guarantee the optimal solution once a problem instance is
completely solved. GALit is a powerful meta-heuristic which provides slightly
better results in terms of solution quality and solution time compared to other
meta-heuristics from the literature. Briefly, GALit generates chromosomes at
each iteration by randomization and immigration, and then performs a two
point cross over between chromosomes chosen with the roulette wheel tech-
nique. AALit solves the problem initially by allowing jobs to be split. And
then split jobs are scheduled by being assigned individually to a batch follow-
ing the last batch in the lower bound solution. To the best of our knowledge,
the performance of approximation algorithms in the batch scheduling liter-
ature, including the one proposed by Li (2012), have not been tested on
numerical instances. It would be thus interesting to observe how AALit per-
forms on our instances. For all these reasons, we choose these three methods
for benchmarking.

Before proceeding with the testing of instances inspired from the ster-
ilization context, we tested B&BH on many small instances which can be
solved quickly by MILPLit. This way, we compared makespan values found

15

by B&BH to optimal solutions given by MILPLit. For that purpose, we
generated 20000 test instances containing 6 to 10 jobs in the presence of 1
to 4 machines (1000 problem instances are generated for each combination
of number of jobs and number of machines). Job sizes are generated from
a discrete uniform distribution: U[1, 120]. p = 60 minutes being the job
processing time, r1 = 0 being the first job release date in any instance, job
release dates are generated using the following formula: rj = rj−1 + U [0, 30]
∀j = 2, ..., n. Among 20000 instances, only 34 of them could not be solved
optimally by B&BH . This observation encouraged us about the solution
quality of B&BH . Thus we proceeded with a detailed analysis of B&BH by
testing real life instances.

5.1. First instance type: Irregular job arrivals

In some hospitals, RMD sets are sent to the sterilization service just
after the end of a surgery. Thus, RMD arrivals can happen at any time
within a day. An example of this kind of organization can be found at
the sterilization service of the ambulatory surgery department of University
Hospital Gasthuisberg in Leuven, Belgium.

Supposing there are surgeries at operating blocks during 8 to 10 hours
per day, job release dates are created according to the uniform distribution
U[0, 600] (unit in minutes). The size of automatic washers can be between
6 and 12 din. (Din is a measurement unit for the volume of automatic
washers which is about 0.003 m3.) Fixing the machine capacity to 12 din,
we create job sizes according to a continuous uniform distribution such that
wj = Uc]0, 12] since any RMD set size smaller than machine capacity is
possible. A washing cycle is 60 minutes. Number of machines is varied from
1 to 4. For each combination of number of jobs and number of machines, 20
problem instances are generated and solved through this section.

5.1.1. Medium size instances

Medium size instances contain 10 to 40 jobs. For all instances tested in Table
2, B&BH is able to give the best solution each time except for one. Let us
detail our analysis by providing more insights about the quality of solution
provided by B&BH and other methods. In Table 2, column #NB (not best)
indicates the number of times a method does not provide the best solution.
Avg. gap shows the average of gap for instances whose makespan value is
not equal to the best one. The formula used for Avg. gap is the following:
(Solutionmethod − best solution) / best solution.

16

Table 2: Benchmarking results on medium size instances for irregular arrivals
B&BH MILPLit GALit AALit

No. No. # Avg. # Avg. # Avg. # Avg.
mach. Jobs NB gap NB gap NB gap NB gap

10 - - - - - - 1 14%
1 20 - - - - - - 2 10%

30 1 ≈ 0 - - 4 5% 5 12%
40 - - 7 5% 5 6% 5 12%
10 - - - - - - 1 10%

2 20 - - - - - - 1 4%
30 - - - - 4 2% 5 6%
40 - - 6 4% 3 4% 3 10%
10 - - - - - - - -

3 20 - - - - - - - -
30 - - - - - - 1 ≈ 0
40 - - 7 1% - - 1 ≈ 0
10 - - - - - - - -

4 20 - - - - - - - -
30 - - - - - - 1 ≈ 0
40 - - 2 1% - - 2 ≈ 0

For instances containing more than 10 jobs, MILP cannot find the opti-
mal solution within one hour. Nevertheless, it can provide the best solution
for all instances containing 10, 20 and 30 jobs (The optimality gap reported
by CPLEX is around 10% for instances with 30 jobs at the end of one hour).
Starting from 40 job instances, performance of MILPLit decreases. Regard-
ing GALit and AALit, their performances increase with the increasing number
of machines since it becomes easier to find an idle machine for the processing
of a batch. In the presence of one and two machines, solution quality of
these heuristics are not satisfactory. However, their solution times are faster.
AALit can find a solution within some milliseconds. The maximum solution
time with GALit is 10 seconds. A detailed presentation of average solution
times for all irregular type instances is given in Table 5.

B&BH can quickly find a solution for instances containing up to 40 jobs in
the presence of a single machine. The branching scheme and quality of upper
and lower bound algorithms play an important role for the solution time.
Table 3 shows the quality of the lower bound algorithm and the initialization
heuristic as well as the number of nodes created by B&BH and the average
solution times in seconds. Columns 4 and 5 show the average and maximum
gaps between lower bound andB&BH which is calculated as (SolutionB&BH

−

17

Table 3: Solution limits for B&BH and quality of lower and upper bound algorithms for
irregular arrivals

LB vs. B&BH UB vs. B&BH

No. No. Avg. Sol.
mach. Jobs No. Nodes Avg. Max Avg. Max. time

10 80 0.04 0.12 0.07 0.33 < 1
1 20 6387 0.07 0.22 0.14 0.3 < 1

30 58705 0.09 0.18 0.18 0.41 4
40 215389 0.04 0.09 0.19 0.31 228
10 1641 0.01 0.11 0.01 0.09 < 1

2 20 11762 0.06 0.11 0.12 0.26 < 1
30 4779125 0.06 0.1 0.16 0.21 700
40 45423418 0.06 0.11 0.19 0.24 3374
10 21 ≈ 0 ≈ 0 ≈ 0 ≈ 0 < 1

3 20 26935 0.01 0.09 0.03 0.11 < 1
30 30126907 0.04 0.1 0.12 0.2 1443
40 277753181 0.11 0.18 0.12 0.21 >3600
10 16 ≈ 0 ≈ 0 ≈ 0 ≈ 0 < 1

4 20 1538 ≈ 0 0.01 0.009 0.07 < 1
30 34491940 0.02 0.08 0.07 0.13 1524
40 262719518 0.1 0.17 0.1 0.15 >3600

SolutionLB/SolutionLB). Gap between initialization heuristic and B&BH is
reported in the same way in columns 6 and 7.

Solution time with B&BH increases when the number of machines in-
creases. In the presence of 3 or 4 machines and 40 jobs, no instance is
completely solved within one hour. This is mainly because same instants
are visited more than once in the branch and bound tree in the presence
of parallel machines. For instance, if two batches can be created with jobs
available at an instant and if there are two machines idle at the same time,
algorithm processes the first batch on machine one and the second batch on
machine two. If, moreover, new jobs are released after batch processing, left
branching occurs more than once for the same job(s). Hence the number of
nodes in the search tree increases.

We see that the lower bound algorithm performs quite well. The average
lower bound value is around 5% which is close to the optimal/best Cmax

value. Regarding the quality of the initialization heuristic, we observe that
the difference between the final value given by B&BH and the upper bound
value is around 15% which leaves room for improvement. For that purpose,
we used the optimal/best makespan value as the initialization value and

18

tested some of the same problem instances. We observed that there is almost
no improvement in the solution time. Then, for the same instances, we
forced the initial makespan value to be equal to a very big number. We
observed that the average solution time increased by an average of 1%. We
can thus conclude that the performance of the initialization heuristic is good
for decreasing the solution time.

5.1.2. Big size instances

We enlarge the broad of test instances and go beyond 40 jobs to test
the behaviour of B&BH on larger instances. Table 4 shows test results for
50, 75 and 100 jobs. Solution methods are stopped at the end of one hour
since neither B&BH nor MILPLit can terminate within the time limit as
also shown in Table 5.
4LB shows the average difference between the best solution and the lower

bound solution. There is a slight decrease in the performance of the lower
bound algorithm. This is due to the increase in the number of jobs while
release dates are within the same interval. There is a slight decrease in the
performances of B&BH and GALit in the presence of a single machine. When
the number of machines increases, especially for the case 4 machines, GALit

performs better than B&BH both for solution time and quality of makespan
since the size of the branch and bound tree increases exponentially and more
computational time is required to improve the solution quality. Performance

Table 4: Benchmarking results on big size instances for irregular arrivals
B&BH MILPLit GALit AALit

No. No. # Avg. # Avg. # Avg. # Avg.
mach. Jobs 4LB NB gap NB gap NB gap NB gap

50 0.05 2 1% 10 8% 3 4% 15 14%
1 75 0.1 1 3% 18 42% 2 3% 7 14%

100 0.11 2 4% 20 > 50% 5 4% 9 16%
50 0.11 1 ≈ 0 8 7% 4 1% 10 8%

2 75 0.09 - - 20 18% 2 ≈ 0 8 7%
100 0.07 - - 20 > 50% 4 ≈ 0 12 8%
50 0.06 - - 4 1% 2 ≈ 0 2 2%

3 75 0.03 2 2% 20 22% 3 ≈ 0 2 ≈ 0
100 0.09 3 2% 20 > 50% 1 ≈ 0 3 1%
50 0.06 - - 5 1% - - 1 ≈ 0

4 75 0.11 2 ≈ 0 20 18% - - 2 ≈ 0
100 0.12 4 1% 20 > 50% - - 4 ≈ 0

19

Table 5: Summary of average solution times in seconds for irregular arrivals
Number of jobs

Method No.mach 10 20 30 40 50 75 100
MILPLit <1 >3600 >3600 >3600 >3600 >3600 >3600
BBH 1 <1 <1 4 228 >3600 >3600 >3600
GALit <1 2 4 8 18 25 62
AALit <1 <1 <1 <1 <1 <1 <1

MILPLit <1 >3600 >3600 >3600 >3600 >3600 >3600
BBH 2 <1 <1 700 3374 >3600 >3600 >3600
GALit <1 <1 8 9 28 24 61
AALit <1 <1 <1 <1 <1 <1 <1

MILPLit <1 >3600 >3600 >3600 >3600 >3600 >3600
BBH 3 <1 <1 1443 >3600 >3600 >3600 >3600
GALit <1 <1 5 4 35 31 40
AALit <1 <1 <1 <1 <1 <1 <1

MILPLit <1 >3600 >3600 >3600 >3600 >3600 >3600
BBH 4 <1 <1 1524 >3600 >3600 >3600 >3600
GALit <1 <1 6 5 32 42 50
AALit <1 <1 <1 <1 <1 <1 <1

of AALit also decreases in these big instances due to the increasing difference
between the lower bound and optimal makespan values.

5.2. Second instance type: Regular arrivals

These test instances are inspired from the sterilization service of Grenoble
University Hospital. RMD sets are sent to the sterilization service twice a
day: early in the morning and in the afternoon. RMD sets arriving in the
morning are those used the day before. Ones sent in the afternoon are those
used in surgeries in the morning. Regarding these informations, we impose
two different release dates for job arrivals: 0 and rmax/2 where rmax stands
for the closing time of the service. Considering the sterilization service is
open 10 hours per day, rmax = 600. We assume that half of the jobs are
released at instant 0 and half of them at rmax/2.

Tables 6 and 7 summarize the test results for quality of makespan and
solution time, respectively. There is a considerable decrease in the solution
time of B&BH due to having only two different release dates. Left branching
is done a few times and thus number of nodes also decreases. Regarding the
quality of the lower bound algorithm, we observe that it gives similar results
compared to those in irregular arrivals in the presence of medium size jobs.

20

Table 6: Benchmarking results for regular arrival instances
B&BH MILPLit GALit AALit

No. No. No. # Avg. # Avg. # Avg. # Avg.
mach. Jobs 4LB nodes NB gap NB gap NB gap NB gap

10 0.02 9 - - - - - - 2 4%
20 0.03 27 2 12.5% - - - - 4 6%
30 0.08 72 2 8.3% - - 2 8.2% 3 10.5%

1 40 0.06 92 2 4.7% 1 9% 3 5.6% 6 5.5%
50 0.08 122 - - 4 7% 2 7% 18 7.6%
75 0.14 266 1 6% 12 11% 1 23% 20 14%
100 0.18 526 1 13% 20 > 50% 3 11% 20 11%
10 0.05 4 - - - - - - - -
20 0.02 7 - - - - - - 1 16.6%
30 0.02 32 1 10% - - 3 11.1% 3 10%

2 40 0.08 91 1 12.5% 1 14.2% 2 14.2% 3 7.6%
50 0.12 214 2 13.3% 2 13% 2 7% 10 11%
75 0.10 229 3 12.5% 14 18% 6 14% 12 8.4%
100 0.23 871 - - 20 > 50% 4 13% 18 11%
10 0.06 30 - - - - - - - -
20 0.05 38 - - - - - - 4 7%
30 0.05 78 - - - - - - 2 12.5%

3 40 0.04 95 - - - - 2 9% 3 11%
50 0.12 93 1 4.7% - - - - 6 13.3%
75 0.14 257 - - 12 9% 1 3% 8 12.5%
100 0.16 589 - - 20 > 50% 1 7% 5 7%
10 0.03 4 - - - - - - 2 8%
20 0.02 6 - - - - - - 1 6%
30 0.02 35 - - - - - - 4 3%

4 40 0.04 20 - - - - - - 1 7%
50 0.08 36 - - - - - - 3 14%
75 0.11 114 - - 9 7% 1 11% 8 16%
100 0.07 228 - - 20 > 50% 2 3% 4 15%

This observation is consistent since lower bound algorithm takes into account
only job sizes.

Although B&BH and GALit are able to find the best solution most of the
time, there is an increase in the average gap for all methods. This is because
of arrival of jobs in big quantities. When many jobs are simultaneously
released, our problem becomes more like a bin-packing problem and hence
even a small increase in the number of batches yields a bigger gap for Cmax.
We observed that our method has at most two more batches compared to

21

Table 7: Summary of average solution times in seconds for regular arrivals
Number of jobs

Method No.mach 10 20 30 40 50 75 100
MILPLit <1 >3600 >3600 >3600 >3600 >3600 >3600
BBH 1 <1 <1 <1 <1 <1 62 1084
GALit <1 <1 2 3 18 22 61
AALit <1 <1 <1 <1 <1 <1 <1

MILPLit <1 604 >3600 >3600 >3600 >3600 >3600
BBH 2 <1 <1 <1 <1 <1 61 1300
GALit <1 <1 1 2 12 29 32
AALit <1 <1 <1 <1 <1 <1 <1

MILPLit <1 422 >3600 >3600 >3600 >3600 >3600
BBH 3 <1 <1 <1 <1 <1 73 1502
GALit <1 <1 1 3 9 31 45
AALit <1 <1 <1 <1 <1 <1 <1

MILPLit <1 309 >3600 >3600 >3600 >3600 >3600
BBH 4 <1 <1 <1 <1 <1 80 1480
GALit <1 <1 <1 5 15 25 37
AALit <1 <1 <1 <1 <1 <1 <1

the number of batches in the solution giving the best makespan value unless
provided by B&BH . This observation is in line with the bin packing results
given in Vanderbeck (1999). Regarding MILPLit, it gives the best solution
for instances containing less or equal to 30 jobs. However, it requires too
much computation. While B&BH finds a solution within some seconds, the
optimality gap is more than 50% with MILPLit at the end of 300 seconds
for the case of a single machine.

As in the case of irregular arrivals, the performance of the lower bound
algorithm decreases when the number of jobs increases. However, this situa-
tion has almost no impact on the solution time with B&BH since the size of
the search tree is small due to having two different job release dates. While
MILPLit is not able to provide a better makespan value for instances con-
taining more than 40 or 50 jobs depending on the number of machines, our
method is able to compete with GALit in the presence of a few machines.
When the number of machines increases, B&BH performs better than other
methods. Regarding solution times of other methods, AALit is very fast and
it can find a solution within some miliseconds. GALit on the other hand has
an increase in its solution time. It can provide a solution in less than one
minute for big size instances.

22

6. Conclusions

In this paper, we studied a parallel batch scheduling problem whose origin
is hospital sterilization services. Jobs have different sizes, different release
dates and equal processing times. Our objective is to minimize the makespan
on parallel identical machines. MILP models in the literature require long
computation time for real size instances. Heuristic methods are faster but
do not guarantee the optimality for makespan. We presented a branch and
bound based heuristic method which can solve instances containing up to 40
jobs within very short time. We tested this method on real life instances
and compared the solution quality to other methods from the literature.
Numerical results show that our method can provide high quality makespan
values in reasonable computational time.

Many extensions of our problem can be considered for future work. Con-
sidering there is imperfect knowledge about job arrivals at the steriliza-
tion service, uncertain job release dates may be considered. Some dynamic
stochastic approaches (e.g., rolling horizon method) can be applied to this
new case instead of deterministic methods. Moreover, some other objective
functions (e.g.,

∑
Cj) can be studied.

Appendix A. Lower bound algorithm: LB

Table A.8: Notations used in the lower bound algorithm

b index for batches
batchb batch indexed b
sizeb total size of jobs in batch b
readyb ready time of batch b for processing
Cap capacity of a batch
jobList list of unprocessed jobs
jfirst first job in jobList
vfirst size of job jfirst
rfirst release date of job jfirst
sizejobList total size of jobs in jobList
nb minimum number of batches to be created with

jobs in jobList (nb = dsizejobList/Cape)
dispM : array of machine available times

23

Input: jobList1, jobList2, dispM ;
Output: integer;
jobList← jobList1 ∪ jobList2;
b ← 1;
sizeb ← 0 ;
Cmax ← 0;
nb← dsizejobList/Cape;
nbold ← 0;
while jobList 6= empty do

if sizeb + vfirst ≤ Cap then
batchb ← batchb ∪ jfirst;
sizeb ← sizeb + vfirst;
readyb ← rfirst;
remove jfirst from jobList;
nbold ← nb;
nb← dsizejobList/Cape;
if nbold > nb then

nb← nb− 1;
b← b+ 1;
sizeb ← 0 ;

end

end
if sizeb + vfirst > Cap then

vfirst ← vfirst - (Cap− sizeb) ;
sizeb ← Cap;
readyb ← rfirst;
nb← nb− 1;
b← b + 1;
sizeb ← 0 ;

end

end
forall the b from 1 to nb do

assign batch b to the machine having the smallest idle time in
dispM ;

end
return greatest machine idle time in dispM ;

Algorithm 1: Lower Bound algorithm: LB

24

Appendix B. Branch and Bound heuristic: B&BH

Table B.9: Notation used in B&BH

t: an instant in the problem
jobListA: set of available jobs by t
jobListUA: set of unreleased jobs by t
dispM : array of machine available times
bestCmax : best makespan value
Cmax: actual makespan value
Cmaxx : new makespan value after left and right branching for

x=L and x=R, respectively
valueLB: value of lower bound at instant t
rlast: last job release date in the problem
LBleftChildNode: value of the lower bound after left branching
LBrightChildNode: value of the lower bound after right branching
tx: instant reached after left and right branching for x=L

and x=R, respectively
jobListAx : list of jobs that become available after left and right

branching for x=L and x=R, respectively
jobListUAx : list of unreleased jobs after left and right branching for

x=L and x=R, respectively
dispMx: array of machine available times after left and right

branching for x=L and x=R, respectively
dispMRmin

: machine having the smallest idle time in array dispMR

dispMxmax : machine having the greatest idle time in array dispMx

for x=L and x=R

25

Input: t, jobListA, jobListUA, dispM,Cmax;
if jobListA and jobListUA are empty and Cmax < bestCmax then

bestCmax ← Cmax;
end
else

valueLB = LB(jobListA, jobListUA, dispM);
if (jobListA or jobListUA is not empty) and valueLB < bestCmax

then
create new jobListAL

, jobListUAL
, jobListAR

, jobListUAR
;

create new dispML, dispMR ;
if t < rlast then

preprocessingleftBranch(.);
end
preprocessingrightBranch(.);
if t < rlast then

LBleftChildNode = LB(jobListAL
, jobListUAL

, dispML);
end
else

LBleftChildNode ←∞;
end
LBrightChildNode = LB(jobListAR

, jobListUAR
, dispMR);

CmaxL
← dispMLmax ;

CmaxR
← dispMRmax ;

if LBleftChildNode <= LBrightChildNode then
if tL − t < p and t < rlast then

B&B(tL, jobListAL
, jobListUAL

, dispML, CmaxL
);

end
B&B(tR, jobListRR

, jobListUAR
, dispMR, CmaxR

);
end
else

B&B(tR, jobListAR
, jobListUAR

, dispMR, CmaxR
);

if tL − t < p and t < rlast then
B&B(tL, jobListAL

, jobListUAL
, dispML, CmaxL

);
end

end

end

end

Algorithm 2: Branch and Bound Heuristic: B&BH

26

Input: tL, jobListA, jobListUA, dispM, jobListAL
, jobListUAL

, dispML

;
tL ← release date of first job in jobListUA;
jobListAL

← jobListA∪ job(s) j in jobListUA such that rj <= tL;
jobListUAL

← jobListUA− job(s) j in jobListUA such that rj <= tL;
dispML ← dispM ;

Algorithm 3: preprocessingleftBranch()

Input:
t, tR, jobListA, jobListUA, dispM, jobListAR

, jobListUAR
, dispMR;

jobListAR
← jobListA;

jobListUAR
← jobListUA;

create new jobsInBatch;
jobsInBatch← createBatch(jobListAR

, 0, jobsInBatch, 0);
jobListAR

← jobListAR
− jobsInBatch;

dispMR ← dispM ;
dispMRmin

← max(t, dispMRmin
) + p;

if jobListAR
is not empty then

tR ← dispMRmin
;

end
else

tR ← max(dispMRmin
, first job release date in jobListUAR

) ;
end
jobListAR

← jobListAR
∪ job(s) j in jobListUR such that rj <= tR;

jobListUAR
← jobListUR− job(s) j in jobListUR such that rj <= tR;

Algorithm 4: preprocessingrightBranch()

Table B.10: Notations used in batch creation procedure

jobList: list of available jobs for batching
index: an integer representing job indexes
usedCapacity: used capacity of the batch
jobsInBatch: jobs in batch
bestV alue: value of the best capacity utilization in the current best solution
jobListk: kth job in jobList
solutionGlobal: jobs put in batch in the current best solution

27

Input: jobList, index, jobsInBatch, usedCapacity;
Output: jobs in batch
if index+ 1 ≤ last element index in jobList then

if usedCapacity+ size of jobListindex+1 ≤ batch capacity then
usedCapacitynew ← usedCapacity+ size of jobListindex+1;
jobsInBatchnew ← jobsInBatch ∪ jobListindex+1;
if usedCapacitynew > bestValue then

bestV alue ← usedCapacitynew;
solutionGlobal← jobsInBatchnew;

end
if usedCapacitynew = bestValue and number of jobs in
jobsInBatchnew < number of jobs in solutionGlobal then

solutionGlobal← jobsInBatchnew;
end
createBatch(jobList, index+
1, jobsInBatchnew, usedCapacitynew);

end
createBatch(jobList, index+ 1, jobsInBatch, usedCapacity);

end
return solutionGlobal ;

Algorithm 5: createBatch()

References

Baptiste, P., 2000. Batching identical jobs. Mathematical Methods of Oper-
ations Research 52, 355–367.

Caprara, A., Pferschy, U., 2004. Worst-case analysis of the subset sum algo-
rithm for bin packing. Operations Research Letters 32 (2), 159–166.

Cheng, B., Yang, S., Hu, X., Chen, B., 2012. Minimizing makespan and total
completion time for parallel batch processing machines with non-identical
job sizes. Applied Mathematical Modelling 36 (7), 3161 – 3167.

Cheng, T., Yuan, J., Yang, A., 2005. Scheduling a batch-processing machine
subject to precedence constraints, release dates and identical processing
times. Computers and Operations Research 32 (4), 849 – 859.

28

Chou, F., 2007. A joint ga+dp approach for single burn-in oven scheduling
problems with makespan criterion. Int J Adv Manuf Technol 35, 587–595.

Chung, S., Tai, Y., Pearn, W., 2009. Minimizing makespan on parallel batch
processing machines with non-identical ready time and arbitrary job sizes.
International Journal of Production Research 47 (18), 5109–5128.

Damodaran, P., Velez Gallego, M., 2010. Heuristics for makespan minimiza-
tion on parallel batch processing machineswith unequal job ready times.
International Journal of Advanced Manufacturing Technology 49 (9–12),
1119–1128.

Damodaran, P., Velez-Gallego, M., Maya, J., 2011. A grasp approach for
makespan minimization on parallel batch processing machines. Journal of
Intelligent Manufacturing 22 (5), 767–777.

Damodaran, P., Velez-Gallego, M. C., 2012. A simulated annealing algorithm
to minimize makespan of parallel batch processing machines with unequal
job ready times. Expert Systems with Applications 39 (1), 1451 – 1458.

Di Mascolo, M., Gouin, A., 2013. A generic simulation model to assess the
performance of sterilization services in health establishments. Health care
management science 16 (1), 45–61.

Dupont, L., Dhaenens-Flipo, C., 2002. Minimizing the makespan on a batch
processing machine with non-identical job sizes: an exact procedure. Com-
puters and Operations Research 29 (7), 807–819.

Graham, R., Lawler, E., Lenstra, J., Rinnooy Kan, A., 1979. Optimization
and approximation in deterministic sequencing and scheduling: a survey.
Annals of Discrete Mathematics 5, 287–326.

Gupta, J. N., Ho, J. C., 1999. A new heuristic algorithm for the one-
dimensional bin-packing problem. Production planning & control 10 (6),
598–603.

Ikura, Y., Gimple, M., 1986. Efficient scheduling algorithms for a single batch
processing machine. Operations Research Letters 5 (2), 61–65.

Li, S., 2012. Makespan minimization on parallel batch processing machines
with release times and job sizes. Journal of Software 7 (6), 1203–1210.

29

Li, S., Li, G., Wang, X., Liu, Q., 2005. Minimizing makespan on a single
batching machine with release times and non-identical job sizes. Operations
Research Letters 33 (2), 157–164.

Liu, L., Ng, C., Cheng, T., 2014. Scheduling jobs with release dates on par-
allel batch processing machines to minimize the makespan. Optimization
Letters 8 (1), 307–318.

Lu, S., Feng, H., Li, X., 2010. Minimizing the makespan on a single parallel
batching machine. Theoretical Computer Science 411 (7–9), 1140–1145.

Malapert, A., Gueret, C., Rousseau, L.-M., 2012. A constraint programming
approach for a batch processing problem with non-identical job sizes. Eu-
ropean Journal of Operational Research 221 (3), 533 – 545.

Martello, S., Toth, P., 1990. Knapsack Problems: Algorithms and Computer
Implementation. John Wiley and Sons.

Mathirajan, M., Sivakumar, A., 2006. A literature review, classification and
simple meta-analysis on scheduling of batch processors in semiconductor.
International Journal of Advance Manufacturing Technology 29, 990–1001.

Ozturk, O., Espinouse, M.-L., Di Mascolo, M., Gouin, A., 2012. Makespan
minimisation on parallel batch processing machines with non-identical
job sizes and release dates. International Journal of Production Research
50 (20).

Parsa, N., Karimi, B., Kashan, A., 2010. A branch and price algorithm
to minimize makespan on a single batch processing machine with non-
identical job sizes. Computers and Operations Research 37 (10), 1720–
1730.

Pearn, W., Hong, J., Tai, Y., 2013. The burn-in test scheduling problem
with batch dependent processing time and sequence dependent setup time.
International Journal of Production Research 51 (6), 1694–1706.

Potts, C., Kovalyov, M., 2000. Scheduling with batching : A review. Euro-
pean Journal of Operational Research 120, 228–249.

Uzsoy, R., 1994. Scheduling a single batch processing machine with non-
identical job sizes. International Journal of Production Research 32 (7),
1615–1635.

30

Vanderbeck, F., 1999. Computational study of a column generation algorithm
for bin packing and cutting stock problems. Mathematical Programming
86 (3), 565–594.

Wang, H., Chou, F., 2010. Solving the parallel batch-processing machines
with diferent release times job sizes, and capacity limits by metaheuristics.
Expert Systems with Applications: An International Journal 37 (2), 1510–
1521.

Yuan, J., Liu, Z., Ng, C., Cheng, T., 2004. The unbounded single machine
parallel batch scheduling problem with family jobs and release dates to
minimize makespan. Theoretical Computer Science 320 (23), 199 – 212.

Zhang, G., Cai, X., Lee, C., Wong, C., 2001. Minimizing makespan on a
single batch processing machine with nonidentical job sizes. Naval Research
Logistics 48 (3), 226–240.

31

